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Abstract—Over the past forty years, Electronic Control Unit (ECU)
technology has grown in both sophistication and volume in the auto-
motive sector, and modern vehicles may comprise hundreds of ECUs.
ECUs typically communicate via a bus-based network architecture to
collectively support a broad range of safety-critical capabilities, such
as obstacle avoidance, lane management, and adaptive cruise control.
However, this technology evolution has also brought about risks: if ECU
firmware is compromised, then vehicle safety may be compromised.
Recent experiments and demonstrations have shown that ECU firmware
is not only poorly protected, but also that compromised firmware may
pose safety risks to occupants and bystanders. While there have been
no known instances of ECU firmware tampering on consumer vehicles
outside of controlled academic or security research, and other work
has been done to separate and compartmentalize ECUs, the security
risks of unprotected ECU firmware must be addressed, especially as
additional ECUs are developed to enable Vehicle-to-Vehicle (V2V),
Vehicle-to-Infrastructure (V2X), and automated driving functionalities.
To this end, we propose an asymmetric key-based infrastructure for
signing and validating ECU firmware leveraging the existing federation
in the vehicle component manufacturing space that exists between
major automotive manufacturers and their major suppliers (“Tier-1
Suppliers”). Verification of firmware integrity occurs at ECU boot as well
as during firmware updates. We developed a software implementation to
demonstrate the feasibility of the approach and its resistance to certain
types of attacks. Lastly, we performed an analysis of the scheme’s possible
attack surface, demonstrating how our proposal can enhance the current
state-of-the-art in ECU firmware integrity.

Index Terms—Vehicle, Electronic Control Unit (ECU), Automated
Vehicles, Connected Vehicles, Firmware, OTA, Public Key Infrastructure
(PKI), Public Key Cryptography (PKC)

I. INTRODUCTION

Since their introduction in the 1970s, Electronic Control Units
(ECUs) have enabled the evolution of vehicles into their modern form
comprising hundreds of ECUs that perform a wide range of tasks,
including engine management, cabin climate control, and vehicle fault
monitoring [1]–[3]. These ECUs have traditionally communicated
over the Controller Area Network (CAN) bus, a standard supporting
real-time communication of up to 1 megabit per second of data.

Given their widespread use, the security of ECUs has become an
increasing concern in both security and automotive manufacturing
sectors. Specifically, white hat studies focused on automotive cy-
bersecurity vulnerabilities have revealed attack vectors with safety
impacts, many of which include ECUs [4]–[7]. Recently, some work
has been done to identify solutions to ECU network security [8] and
inter-ECU trust [9]. There are even systems that have been developed
to secure and validate ECU update delivery between manufacturers
and vehicles over-the-air [10].

While existing ECUs may contain limited firmware flashing pro-
tections such as challenge-response pairs, these protections do not
provide effective security against a determined attacker [11]. This
paper presents a model for adopting Public Key Infrastructure (PKI)

for assuring ECU firmware update integrity that provides protection
against attacker models that differ from existing systems.

Patent filings [12] [13] have established that the need to validate
and assure vehicle ECU firmware validity has been recognized
by industry for some time, but adoption has been slow to date.
Difficulties with developing such a system are due to the complex
stakeholder dynamics between the automobile Original Equipment
Manufacturers (OEMs)s, and their primary suppliers (“Tier-1 Suppli-
ers”) who manufacture most of the actual ECUs that are installed on
consumer vehicles.

While Tier-1 Suppliers may strive to keep the number of distinct
ECU configurations to a minimum, vehicle manufacturers often
require customization to ECU firmware on a per-model or even a
per-vehicle basis. A firmware assurance scheme needs to respect
these potentially competing interests while minimizing cost and
complexity.

This paper proposes an asymmetric key-based infrastructure for
signing and validating ECU firmware that leverages the existing
federation in the vehicle component manufacturing space that exists
between major automotive manufacturers and their major suppliers
(“Tier-1 Suppliers”). The proposed model is intended as a template
for manufacturers to adapt and customize for their own products. Our
distributed split-key system addresses both the low-level technical
problem of securing ECU firmware and their update processes, as
well as mitigate cryptographic key exposure at the manufacturer level.
Our system also aims to be broadly compatible with lower-cost ECU
hardware to reduce cost.

We test our system using an OpenSSL-based software application
surrogate. Our surrogate implements both the organizational structure
required to implement our scheme, as well as mechanisms required
to create, transmit, and validate updates. We also developed tools that
attempt to tamper with the firmware in ways that an adversary might
attempt on actual vehicles, and we verified that our system is able to
resist these tactics.

We present this work as a model for adoption by automotive OEMs
and Tier-1 Suppliers. We provide this work as an open-source, freely
available model for use across the automotive industry and beyond.
The remainder of this paper is organized as follows: Section II
discusses prior art that informs our proposed technique. Then we
describe and explain our system in detail in Section III. Section IV
describes several analyses that we performed to verify ECU update
integrity against contemporary attacks, including tampering; we also
discuss the impact and consequences of adopting our proposed
system. Section V describes a software-based emulation framework
we used to validate our proposed approach. We discuss in Section VI
the implications and the potential impact of using our approach on
stakeholder communities (e.g., manufacturers, independent mechan-
ics), cross-ECU validation, and scheduling ECU updates. Finally,
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we summarize the work and briefly discuss future investigations in
Section VII.

II. BACKGROUND AND RELATED WORK

This section provides background information on Public Key Cryp-
tography (PKC) and PKI relevant to our approach, as well as related
work. We first created a general attacker model that our proposed
system would need to defend against. We then analyzed existing
systems and structures that leveraged PKC and PKI to provide
security and assurance to systems and organizations, considered
their strengths and weaknesses, and analyzed the costs (fiscal and
otherwise) associated with their implementation and maintenance.

A. Summary of PKC and PKI

Public Key Cryptography (PKC) is at its core based on asymmetric
cryptography. Symmetric encryption is designed to use the same key
to both encrypt and decrypt data. Asymmetric encryption, by contrast,
uses two different keys called the public and private key respectively,
with the implication that the public key cannot be used to recover the
private key. Data encrypted with a public key cannot be decrypted
with that same public key, but rather may only be decrypted with the
private key. Similarly, data encrypted with the private key may only
be decrypted with the public key. In addition to encryption of files,
PKC can be used to sign data. For example, Rivest–Shamir–Adleman
(RSA) signatures compute a cryptographic checksum of the data, then
encrypt the cryptographic checksum with the private key; validating
an RS signature requires decrypting the cryptographic checksum
using the public key, then independently computing the cryptographic
checksum of the data. If the signature cannot be decrypted with the
public key, or if the checksums do not match, then either the data, the
signature, or both have been altered. Since cryptographic signatures
tend to be much shorter than key lengths and have consistent lengths
that do not depend on the amount of data signed, signatures can
be used to validate files of any length. Other key types such as
Elliptic Curve Digital Signature Algorithm (ECDSA) rely on other
mechanisms to create signature data from asymmetric key pairs.

Public Key Infrastructure (PKI) utilizes PKC to create a chain of
trust. A chain of trust allows a user to trust a certificate so long as
they can prove that the certificate has been trusted by an authority
that the user has previously trusted, without requiring the user to
have explicitly trusted that exact certificate in the past. In analogous
terms, this scenario is similar to a child knowing they can trust their
teacher, because their parents trust the teacher, and the child trusts
their parents. This chain of authority is important in situations where
it is not feasible for the user to store every single possible certificate,
or when certificates and keys are changed [14].

B. Attacker Model

Before designing a system, we considered several attacker models
to focus our existing system analysis and eventually our proposed
system’s design. Like Uptane [10], we assume that attackers aim
to gain access and residence on vehicle systems, thereby allowing
attackers to monitor and control systems remotely, putting occupants
and bystanders at severe risk. We also assume that attackers have
significant control over the update pipeline, including but not limited
to stored images and metadata, the wired and/or wireless network
links, and the vehicle network bus.

Beyond these capabilities, we assume attackers are sophisticated
and/or well funded enough that they can also compromise operational
security in one or more ways. Examples might be convincing a
security officer to obtain a signing key, to replace a firmware image

delivered by a Tier-1 Supplierwith a malicious image, or to install
malware on a primary security server.

C. Existing PKI and PKC-based Systems

In designing our proposed assurance scheme, we analyzed existing
PKC and PKI-based systems to determine the functionality, risk, and
cost each system bears.

1) Transport Layer Security: Transport Layer Security (TLS) is
an cryptographic communication security protocol used to secure
traffic between web servers and the computers that connect to these
servers, and is possibly the most widely used PKI-based system
used today [14]. TLS utilizes X.509 standard certificates, which can
be used solely to encrypt traffic to and from servers, or optionally
can be used to identify a server as operated by a specific entity;
the latter capability is often used for websites handling financial
transactions. TLS is an evolution of an earlier standard, Secure
Sockets Layer (SSL). SSL contains many known security flaws, and
after a vulnerability was discovered allowing attackers to downgrade
TLS connections to insecure SSL connections [15], most browser
vendors opted to disable SSL by default [16] [17] [18].

When a client connects to a website secured with TLS, the server
responds with its certificate, among other data used to secure the
connection. This certificate is validated by the client against the
client’s root certificate store; if the client cannot verify that the
server’s certificate was signed by a root certificate authority that the
client trusts, it disconnects from the website [14].

Server certificates are typically provided by an Intermediate Certifi-
cate Authority, which in turn is certified by a root certificate authority.
Currently, more than 100 root certificate authorities are commonly
recognized by most browsers and operating systems [19][20][21].
This decentralization of authority requires clients to maintain a
database of public root certificates, which must also be kept up to
date if root certificate authorities become compromised or otherwise
lose their trustworthiness. For example, Symantec Corporation was
discovered to have twice improperly issued certificates which could
have been used to impersonate important websites [22], leading to
their root certificate authority being phased out. If the improperly
issued certificates had not been discovered, Symantec or one of
their delegated authorities could have continued to issue certificates
improperly, thereby potentially putting users at increased risk for
phishing and malicious updates.

Based on the security vulnerabilities inherent in large-scale PKI
trust chains as is the case with the TLS system, we assert that if a
system designed for automotive ECU updates uses PKI, it should be
based on a limited pool of root certificate authorities to lessen the
likelihood of a rogue authority improperly issuing certificates. Ideally,
such a system would only involve as few root certificate authorities
as possible to reduce storage requirements on the ECU and to lessen
the surface of the PKI certificate authority against a potential attacker
who may be attempting to steal or duplicate a private signing key.

2) United States Department of Defense (DoD) Common Access
Card (CAC): The United States Department of Defense uses a
smartcard-enabled identification card (called the Common Access
Card (CAC)) that doubles as a token with embedded public and
private keys [23]. In a paper analyzing the potential attacks that
could be made against users of CAC-enabled computers, Dasgupta
et al. describe the CAC as a “non-tamperable, credit card sized
smartcard” that “can generate public-private keypairs on the card
and perform PKI operations without exposing the secret keys to the
host machine”. Dasgupta et al. describe several theoretical attacks
that could be performed against CAC-enabled systems; however, the



attacks described are only effective if the system the CAC is attached
to is also connected to the Internet.

The most important aspect of the specific design of the CAC system
that can be applied to an automotive ECU update scheme is in the
sequestration of the private keys to the smartcard itself. As described
by Dasgupta, the CAC performs all signing operations on-card, so
that the key itself does not get exposed to the host computer, and
furthermore the key is protected with a PIN. Without an easy way to
copy the keys off the card, there is little risk that users of the key could
inadvertently disclose their private key, and attackers would have to
have physical access to the token in order to attempt extraction, a
process which is theoretically lengthy enough that the credentials on
that CAC can be revoked before an attacker can make use of them.
An ECU firmware signing process could similarly use physical tokens
to store keys. Further restricting signing activities to non-Internet
connected machines may also mitigate the risks that Dasgupta et al.
disclosed.

According to the United States Department of Defense’s 2019
budget [24], the budgeted cost of the CAC system (including both the
Real-Time Automated Personnel Identification System (RAPIDS) and
Defense Enrollment Eligibility Reporting System (DEERS) compo-
nents) in 2019 was about $2.2M. This system covers an estimated 2.8
million active duty, reserve, and civilian personnel, and an unknown
number of contractors who are also issued CAC credentials. A
PKI-based automotive ECU update system would, in contrast, not
require as much infrastructure, and may not require all the identity
verification features that the CAC system provides, which would
likely result in a lower adoption cost. As long as the hardware cost
for the physical tokens is not prohibitive to automotive manufacturers
and suppliers, it seems feasible for physical tokens to be incorporated
into a system for updating automotive ECUs.

3) Desktop and Mobile Operating System Updates: Both desktop
and mobile operating systems already use PKC to assure update
integrity. Many Linux-based systems either use the Red Hat Package
Manager (RPM) or Debian Advanced Package Tool (APT) systems
for distributing and installing program and operating system updates.
These systems consist of centralized package repositories containing
bundled and compressed copies of software, which is queried by
package managers running on client systems. Packages for both of
these systems can be signed by a private GNU Privacy Guard (GPG)
key, for which the public key is known to client systems; this makes
tampering with individual package contents difficult. Metadata for
packages within each software repository are also signed by a GPG
key, which makes tampering with the communication layer between
the repositories and clients difficult. While these systems are not
immune to attack, the most feasible attacks are replay attacks, which
would only allow an attacker to force a client to remain on an old
version of a particular set of packages [25].

Mobile operating systems also make use of PKC to secure updates.
Google’s Android operating system is designed to use asymmetric
keys to sign firmware images that can be validated on-device before
the image is applied. [26]. This verification mechanism can be used
even if a user attempts to flash a firmware image manually, instead
of using the built-in update tools. Some Android phones also make
use of a dual partition layout, where updates are applied to a copy
of the firmware that is not currently running. Upon reboot, if the
update was applied successfully, and the image has not been modified,
corrupted, or tampered with, the new image is booted; otherwise,
the old partition is booted instead [27]. The update mechanism
present in the Android mobile operating system shows that PKC can
be used practically to secure updates in consumer-grade hardware

without placing a significant knowledge burden on the user to perform
these updates, which is promising for automotive ECU updates
where updates may need to be performed with little to no operator
interaction. In addition to assuring updates, Google has developed a
security assurance framework called SafetyNet within their Android
mobile operating system. SafetyNet can validate whether or not the
end user has made certain modifications to their phone or tablet’s
operating system, which applications can use to restrict or deny
functionality [28]. While it is possible to bypass SafetyNet [29],
detection of modified operating system components remains an
important priority for any ECU firmware assurance scheme.

Based on existing use of PKC and PKI in desktop and mobile
operating system updates, we believe that extending this model
to vehicle ECUs is possible. However, we need to establish what
types of hardware will be capable of performing the necessary
cryptographic operations necessary to implement PKI-based firmware
validation. While we will establish some cost measures for additional
cryptographic hardware in Section III-D, we have found evidence
showing interest within the automotive sector for adopting PKC and
PKI, even if additional hardware is required.

4) Automotive PKC-Based Prior Art: Recent patent activity shows
that there is some developing interest in using PKC to secure and
validate ECU firmware images and updates. We analyzed two patents,
one from Hyundai Motor Company and one from Intel to determine
the extent to which PKC and PKI has been proposed or could be
leveraged to assure ECU firmware image and update integrity.

Hyundai Motor Company’s 2013 patent covers a secure firmware
update method [12]. Their method works similarly to session-key
based communication, where an asymmetric key is used to encrypt
a symmetric session key that is used to encrypt the bulk of the
data transfer. Hyundai’s system appears to be targeted at securing
the communication between the vehicle manufacturer or Tier-1
Supplier, and the mechanic or dealership (described in the patent
as “diagnostic apparatus”), rather than the entire chain between
the Tier-1 Supplier, automotive manufacturer, and the ECU itself.
Since the Hyundai patent’s validation chain ends at the diagnostic
apparatus, the expected cost of deployment would be low, especially
if the diagnostic apparatus is a general-purpose computer that can
already perform cryptographic functions in reasonably short amounts
of time. However, this approach has a security flaw: if an attacker can
compromise the diagnostic apparatus, they can control the firmware
image that is loaded onto the ECU. We believe that end-to-end
assurance is necessary in order to protect against possible upstream
attacks. While this method is inherently flawed, it does demonstrate
interest in adopting PKC by automotive manufacturers to secure ECU
firmware transmission. It also provides context in one of our design
decisions regarding encryption of update payloads, which is explained
in further detail in the Section III.

An Intel patent describes a methodology for protecting device
firmware, specifically describing their patent’s applicability towards
securing and assuring over-the-air ECU updates [13]. It describes
a system where firmware is validated on boot using a security
co-processor. If the security co-processor cannot validate the loaded
firmware, it forces the device to use a backup firmware, or otherwise
does not boot, similar to Google’s A/B partition scheme for Android.
Intel’s exact method for the firmware validation is not described in
the patent, but the method could potentially be implemented using
PKC or PKI-based signature validation methods. Importantly, the
Intel patent shows potential interest in utilizing additional hardware
to perform the firmware validation, which may signal interest among
the automotive manufacturing sector in utilizing additional hardware



despite the increased cost.

In response to the disparate set of firmware protection schemes
(or lack thereof in some automotive systems), an open standard
called Uptane was initially developed in 2016 to address over-the-air
firmware image validation [10]. However, Uptane demands significant
remote connectivity for ECUs in order to obtain and validate firmware
images, which by design makes their system vulnerable to network
denial-of-service attacks. In addition, the amount of server roles
required in Uptane requires a significant and ongoing infrastruc-
ture investment that is borne mainly by automotive manufacturers.
Lastly, Uptane’s built-in mitigation against manufacturer or Tier-1
Supplier key compromise is limited; such an event requires by design
a manual recall of affected vehicles.

D. Takeaways from Prior Art

Based on existing PKI and PKC-based systems, we created a list
of aspects we wanted a proposed ECU update assurance scheme
to have. These aspects include: using asymmetric keys instead of
symmetric keys to validate new firmware images, have the ability
to use alternative keys, secure private keys against theft by storing
them on physical tokens that are not attached to Internet-connected
computers, and use existing ECU compute hardware or inexpensive
hardware to minimize the cost of implementing our proposed scheme.
There is also a crucial aspect missing from existing PKI-based
schemes: an appropriate two-party signature scheme. While it is
possible to design a PKC-based system to require two parties to
provide a signature for a file to be accepted, this method would not
work as well in the automotive sector, as it would require both an
automotive manufacturer and a Tier-1 Supplier to cooperate whenever
an update needs to be released. Our proposed scheme addresses this
specific problem to delegate an appropriate level of control over
firmware contents to both the Tier-1 Supplier and the automotive
manufacturer.

III. PROPOSED PKI INFRASTRUCTURE SCHEME

Based on the identified requirements, we have designed a scheme
that makes use of a dual PKI certificate authority, one each for
the Tier-1 Supplier and automotive manufacturer for a given ECU
on a target vehicle. We have taken aspects from each of the
discussed existing PKI and PKC-based systems and adapted them
for automotive use. In particular, we used the idea of a certificate
authority (as per TLS) instead of a single certificate (as implemented
in desktop and mobile operating system updates) to validate ECU
firmware and configurations. To prevent key duplication, we propose
using physical tokens similar to the United States Department of
Defense CAC, and we propose using new hardware if necessary to
perform the cryptographic functions on the ECUs themselves, which
in practice, may already be sufficiently powerful enough to perform
the operations required. This system can also be used on ECU boot
to validate its own firmware, similar to how SafetyNet or other boot
validation systems work.

We propose a new firmware signature model that is split among two
authorities: the Tier-1 Suppliers, and the automotive manufacturers.
Each company would maintain their own PKI but would be able to
share public keys, meeting the needs of automotive stakeholders.

A. Firmware Certificate Authority Scheme

Our approach uses a multi-level certificate authority for each of the
automotive manufacturers and Tier-1 Suppliers, similar to how most
TLS certificate authorities are structured. In our examples, we use a

three-tier certificate structure; while there are no technical restrictions
preventing longer or shorter certificate chains, shorter chains require
more certificate reuse which may incur more risk of certificate
misuse, while longer chains with more certificates may be more
expensive to maintain. Ultimately, automotive manufacturers and
Tier-1 Suppliers would have the freedom to structure their certificate
authority in a way that best suits their respective organizational
structures and product lines.

We demonstrate two sample certificate authority models, one
for a demonstrative Tier-1 Supplier, and one for a demonstrative
automotive manufacturer, which are depicted in Figure 1. Each model
starts with a single root certificate, then branches into different
categories; in the demonstrative Tier-1 Suppliermodel, the second
level branches based on ECU product category, and the third level
branches into specific ECU models, each with their own unique key.

By comparison, the demonstrative automotive manufacturer has
chosen to separate their second level based on model year, and their
third level based on vehicle model. This structure would implicitly
rotate second and third level keys once per year, which would reduce
the size of the vulnerable fleet if any particular key were inadvertently
disclosed.

Fig. 1. A graphical depiction of our proposed PKI hierarchy. Lines indicate
that a lower-level public key has been signed by the upper-level private
key, creating a chain of trust. The left hierarchy represents a hypothetical
automotive manufacturer, and is separated from the hypothetical Tier-1
Supplieron the right.

Importantly, each company’s PKI certificate authority would be
effectively separated from each other, which precludes the need for
a third-party certificate authority to coordinate PKI authorities across
manufacturers. This aspect allows each manufacturer to manage their
own PKI and adapt its structure to best suit their needs, capabilities,
and budget.

We propose that these certificates be generated and stored on physi-
cal tokens that do not allow direct extraction of the certificates, similar
to Department of Defense (DoD) CACs. These certificates should be
stored in physically secure locations while not in active use. While
some may argue that Hardware Security Modules (HSMs) render
physical tokens obsolete, independent HSMs are relatively expensive,
and security vulnerabilities have been found with processor-included
variants such as Intel’s Trusted Platform Module (TPM) [30].



B. Image Creation Process

In our proposed scheme, an image comprises four components:
the firmware, the firmware signature, the configuration, and the
configuration signature. The ECU firmware image is produced by the
manufacturer of the ECU (commonly a Tier-1 Supplier), and is signed
with the appropriate signing key from the PKI certificate authority we
described earlier. Both the firmware and signature are delivered to the
vehicle manufacturer. The manufacturer is then responsible for testing
the firmware image and creating an appropriate configuration variant
for this firmware image. Once the manufacturer has completed their
acceptance testing and has produced a configuration for each vehicle
the ECU is installed on, they will then use the appropriate vehicle
model key from their own PKI to sign the concatenated firmware,
firmware signature, and configuration.

In contrast to the Hyundai patent that encrypts the update, our pro-
posed method does not require encryption of target firmware to assure
update integrity. This design decision is based on three key motivating
factors. First, the overhead introduced by the addition of the symmet-
ric key may increase the cost of implementing the proposed scheme
on resource-constrained ECUs. Second, it is conceivable that a third
party could obtain these keys and thus the entire unencrypted payload
by tampering with a fielded ECU. Lastly, even if the keys remain a
secret, a motivated attacker could convince or trick a company insider
who has access to unencrypted payloads or even full source code to
provide a copy of the firmware data. Companies should carefully
consider the value that encrypted firmware payloads provide, versus
the additional cost for implementing on-ECU decryption requires.

Fig. 2. Demonstration of firmware update build process.

C. Onboard Firmware Update Validation

As described in the previous section, an ECU update is de-
composed into four separate components: the firmware image, the
firmware signature, the manufacturer-specified configuration, and the
manufacturer-derived signature that covers the firmware, firmware
signature, and configuration. During the update process, all four
of these components are presented to the target ECU, along with
any public certificates in the PKI chain that are not stored within
the ECU’s cryptographic hardware. If the ECU cannot validate the
signature with any stored or validated certificates, it then will end the
update process. Otherwise, it continues the update process by splitting
off the firmware configuration file and validating that the combined
firmware, firmware signature, and configuration corresponds to the
provided configuration signature. If so, it then splits off the configu-
ration and the firmware signature, and similarly validates the firmware
signature with the firmware itself. This process is depicted graphically
in Figure 3. If the manufacturer has changed the key used to sign
updates, the update mechanism will then have to provide the new
certificates used in the signature process. This update process would
only require two additional steps, performed before the previously
described update process, on the ECU: all the new certificates are
first checked against the stored PKI certificates to validate that the

new certificate falls within the root certificate’s authority, and after the
update is validated, the keystore is updated with the new certificates.
The update process described in the previous paragraph would then
continue as before. The combination key replacement with firmware
update process is depicted graphically in Figure 4. This firmware
update process could make use of a backup memory store similar
to Google’s Android A/B partition scheme to prevent malfunction
if an ECU firmware update were to fail for some reason other than
firmware signature failure.

D. Cost Analysis

1) Hardware Implementation Cost: A quantifiable cost measure
for implementing the proposed scheme comes from the cost of
the additional hardware ECUs required to perform the public-key
authentication and hashing functionality. For ECUs that do not
have the necessary processing power to perform PKI validation and
calculate firmware checksums, either accelerator chips must be added
or a more powerful processor must be added. As an example, Maxim
Integrated’s DS2477 security coprocessor, which can calculate SHA-
3 checksums and can perform public key authentication, had a listed
cost of $0.97 per 1, 000 units at the time of writing [31]. Based on
2018 production figures, securing 100 ECUs per vehicle using this
chip would have cost $590M for Ford Motor Company in 2018 [32],
$840M for General Motors in 2018 [33], and $480M for FCA Group
in 2018 [34].

Assuming 100+ ECUs per vehicle that need to be protected,
the cost of this hardware will be difficult to justify. However, this
cost could be partially mitigated due to current hardware usage.
Not all ECUs may require secure firmware updates, which would
remove the need for additional cryptographic hardware to be added
to these devices. In addition, many ECUs already contain processors
that can perform the necessary cryptographic functions, or can be
substituted with equivalent parts for similar or lower costs. Many
automotive-grade Cortex-based ARM microcontrollers such as the
Cortex M-0 and M-4 already contain embedded security modules and
cryptographic processing functions that can perform cryptographic
functions quickly [35][36].

IV. ANALYSIS OF SCHEME THREAT SURFACES

The goal of securing ECU firmware updates is to prevent malicious
actors from modifying ECU firmware in ways that can alter a
vehicle’s behavior malignantly. Undesired behavior includes dis-
abling, damaging, or destroying the target vehicle, injuring or killing
occupants, other drivers, or pedestrians, and hijacking or redirecting
the target vehicle(s) for financial, political, or personal gain. Even a
single ECU with limited access to the vehicle network can potentially
cause undesired behavior, as discussed by Cho and Chin in 2016 [37].
Firmware update hardening would have protected against the Miller
et al. exploit, which required firmware modification of several target
ECUs including the infotainment system [4].

It is important to note that no mitigation strategy is perfect, and
while our proposed system can eliminate much of the current threat
surface left by unsecured ECU update mechanisms, the system may
still be vulnerable. However, the cost of implementing the system
may be justified by the reduction in risk.

We next discuss how our proposed key scheme mitigates theoretical
attacks that could be performed against ECUs protected by this
keying scheme, and we provide our analysis on the residual risks
for identified vulnerabilities.



Fig. 3. Full Update Verification Process with No Key Changes

Fig. 4. Update process with key changes. Update validation section follows process depicted in Figure 3

A. Basic ECU Firmware Validation

Part of the motivation for validating ECU firmware updates before
installation is to provide assurance that any updates performed
over unsecured channels such as over-the-air updates have not been
modified or tampered. Regardless of whether modifications occur due
to transmission errors, or from malicious actors operating at any point
along the update chain, validation of the firmware and configuration
at the ECU prevents the compromised ECU firmware from being
flashed. Even if over-the-air update capabilities are not enabled for
a particular vehicle, validation of ECU firmware is still important.
If an automotive dealership or third-party mechanic’s systems are
compromised, it could allow for an attacker to replace legitimate
firmware files with altered ones; validation of firmware prevents the
potentially malicious firmware files from being flashed.

If an attacker were to attempt direct flashing of ECU firmware
by connecting to the vehicle bus, then they would only be able to
flash valid firmware images with valid configurations. They would not
be able to add malicious functionality, or change configuration pa-
rameters beyond manufacturer specifications. Similarly, if an attacker
had control over the vehicle’s offboard communications, they would
again only be able to flash legitimate firmware images, or deny new
firmware images from being loaded. If an attacker had control over

a manufacturer’s update repository, then they could replace images
with tampered images, but as the signing keys are kept safe these
images would be detected as tampered with by ECUs if an install
were attempted.

Of course, systems such as Uptane already implement ECU update
assurances. Where our system differs is in its protection against
attacks against key disclosures, which is discussed in the next
subsection.

B. Disclosure or Duplication of Keys

The consequences of improper disclosure of private keys can
be catastrophic to end-user security. As an example, a computer
manufacturer recently lost control of signing keys used to distribute
software and firmware updates, which attackers subsequently used
to target specific users with malware [38]. While that incident was
unintentional, insiders inadvertently or deliberately disclosing keys is
a threat that must be taken seriously.

Our proposed keying scheme mitigates inadvertent disclosure of
signing keys in several ways. The first mitigation comes from our
requirement that keys be stored on PIN-protected physical tokens,
and only used on machines without direct access to the Internet. PIN
protection restricts the ability to sign updates to those who know



the PIN, mitigating the risk of a key being stolen. By restricting
card signing to specific non-Internet connected computers, it increases
the difficulty that a malicious firmware file is signed by restricting
the channels for files to be loaded and removed from the signing
machine. If a non-insider were to steal the card by some means, then
the extraction of the private signing key would take time, even for a
sophisticated and well-funded attacker [39]. Even if an insider who
knows the PIN were to steal the card, a routine security audit would
uncover this improper access, allowing time for replacement firmware
images with new keys to be issued.

The second mitigation comes in the form of the split signing
authority. If an attacker has full control over the Tier-1 Supplier’s key
signing authority, they could produce signed malicious firmware
files. However, these firmware files can only be loaded onto an
ECU after the manufacturer adds their configuration and signs the
firmware. In order for the Tier-1 Supplier firmware to be loaded, it
would either have to pass through the manufacturer’s acceptance and
signature process, or the attacker would also have to have control
over the manufacturer’s keys. If an attacker only had full control
over a manufacturer’s key signing authority, they would only be
able to load valid firmware files. While the attacker could insert
invalid configurations that lead to the ECU behaving improperly or
becoming disabled, they would not be able to add new functionality
not present in the existing firmware provided by the Tier-1 Supplier,
barring any exploitable vulnerabilities in the existing firmware images
themselves. Further protections to prevent firmware rollback to known
insecure images could be incorporated to protect against inadvertent
release of signing keys.

The scheme’s third mitigation strategy to address key disclosure
makes use of key authority structure. Attackers that have full control
over the root signing keys could produce valid firmware (in the case
of the Tier-1 Supplier keys) and/or configurations (in the case of the
manufacturer keys) for all products. However, by creating a tiered
tree of keys, each subsequent layer of keys reduces the number of
products that would be covered by said key, and thus the impact from
an inadvertent key disclosure.

By incorporating aspects of zero trust into our update system, the
system is able to better mitigate against disclosures of signing keys
compared with other state-of-the-art systems, while providing similar
levels of update assurances.

C. Code Insertion in Development Process

We considered a scenario where attackers have control over the
firmware image produced by the Tier-1 Supplier, which is used to
insert a vulnerability into a firmware image that is approved and
signed by the manufacturer without said vulnerability being found.
We assume that this firmware image cannot prevent installation of
valid signed firmware images nor add additional public keys for
validating firmware, but otherwise has full control over the ECU’s
behavior. Our proposed keying scheme on its own does not protect
ECU firmware from accidental, deliberate, or malicious flaws inserted
during firmware development, but we can show that these cases
can be partially or wholly mitigated by adopting some additional
techniques.

Without any features within the firmware and/or configuration
that can mark certain firmware versions as untrusted, vulnerable
firmware versions could be installed, especially if the manufacturer’s
firmware signing keys have also been compromised which would
allow attackers to produce valid firmware and configuration files.
However, if version metadata are embedded into the firmware image,
specific versions or ranges of versions could be identified and marked

as untrusted by later firmware releases, preventing rollback to affected
versions. One simple scheme would be to simply disallow installation
of older firmware images. However, this approach would require
the Tier-1 Supplier to produce a new firmware image if the current
firmware image is found to be vulnerable, as otherwise attempting
to install an older, non-vulnerable version would be rejected by the
ECU.

One possible way to mitigate code insertion attacks is to extend
the use of PKI hardware tokens to employees as well, similar to the
DoD CAC system. All code commits would then have to be signed
using a private key from a trusted employee, which would make
unauthorized code commits easily detectable by automated systems
and manual audits. However, considering the cost of the DoD CAC
system, this solution may be too costly for Tier-1 Suppliers and
automotive manufacturers.

D. Time-based Attacks

Many PKC-based systems incorporate a time component to prevent
replay attacks. As an example, the Kerberos network authentication
protocol uses timestamps to ensure that authentication requests are
recent, and have not been recorded and replayed at a later time [40].
This time-based authentication component requires that systems have
their clocks roughly synchronized. In comparison, many ECUs do not
contain real-time clocks, which could open up our proposed scheme
to timestamp-based attacks if this weakness is not addressed.

Generally, lack of verifiable timestamp in a signed message results
in a system being weak to replay attacks. In our proposed scheme,
we do not require explicit global clock synchronization in order to
validate updates. The lack of a globally synchronized clock could
result in older, vulnerable signed updates getting installed in ECUs
over newer, potentially fixed versions of the firmware. We considered
adding a timestamp to the firmware version in our scheme, as well
as a requirement that ECUs verify that the timestamp of the signed
update is newer than the timestamp of the old update. However, we
discovered a theoretical weakness with this approach if an attacker
has full control over the manufacturer firmware signing certificate:
they could advance this timestamp into the future, which would make
it difficult for manufacturers to produce a new firmware bundle that
can overwrite the malicious update. Replacing the timestamp with a
version counter would still leave the ECU open to this type of attack.

There is a second concern regarding timestamps: certificates are
generally produced with defined expiration dates. Without an on-
ECU global clock, it would be difficult for an ECU to determine
that a certificate is no longer valid. However, unlike the previously
described theoretical firmware post-dating attack, certificate replace-
ment is not similarly vulnerable. An ECU can assume that the global
time is not older than the latest time of any certificate in its stored PKI
database, and thus if a trusted certificate is installed with a timestamp
past any of the stored certificates’ expiration dates, then the ECU can
assume that either the new certificate is invalid, or the certificates in
its database are now out-of-date. If an attacker has control over some
but not all of the PKI certificate authority, then they would only be
able to post-date certificates up to the lifetime of the highest certificate
authority certificate they control, which in our model would be 10
years if they had control over the Tier-1 Supplier type certificates or
the Manufacturer model year certificates.

V. VALIDATION STUDIES

To test and validate our proposed scheme, we developed a software-
based emulation of our framework, which we have made available
for public review [41]. We developed an application using the Robot



Operating System (ROS) middleware [42] to emulate an ECU that
periodically outputs a message at a configurable rate, that can accept
update parameters in the form of four components as described
earlier in this paper (firmware image, firmware image signature,
configuration, combined firmware and configuration signature), which
can be tested using the provided simulated update tools. Our PKI
is generated using OpenSSL [43], and our software uses the Botan
library for decoding cryptographic certificates and validating sig-
natures [44]. Scripts are also provided to simulate the certificate
authority generation process. These scripts allow users to create
their own three-level certificate authorities using the automotive
manufacturer and/or Tier-1 Supplier models described. There are also
scripts available to create valid firmware images and updates for
the demonstration ECU code. Valid firmware images and firmware
updates are also provided to allow testing of our code without
requiring the generation of a new certificate authority. We have opted
to not provide the private keys used to generate these images, as
disclosing private keys is bad practice that has catastrophic security
implications [38].

We have also provided utilities that demonstrate the resilience of
our scheme against two types of attacks: a firmware tampering attack,
and an on-ECU firmware tampering attack. The former attack is
detected by the demonstration ECU code during the flashing process.
The latter attack is detected on ECU startup, which our demo ECU
responds to by canceling its startup process. We recognize that failing
to start may not be acceptable in production ECUs.

While our demonstration code does not support full PKI authority
validation to support key changes, we are planning to extend our
ECU firmware code to support full PKI authority validation as well
as key updates in future versions. We also plan to expand the types
of attacks to demonstrate resilience against other attack modalities.

VI. DISCUSSION OF PROPOSED SCHEME

While analyzing our proposed scheme for potential security vul-
nerabilities, we discovered some additioal effects that could result
from the adoption of our assurance scheme. We also discovered areas
where our proposed assurance scheme does not augment existing
ECU security, and highlight some solutions that could potentially
compliment our approach to create a more robust and secure system.

A. Comparison with Uptane

At a glance, our proposed system appears similar to Uptane, which
we briefly mentioned in Section II. However, while Uptane’s design
goals appear to focus on secured and assured delivery of firmware
updates, it does not address ECUs that cannot connect directly to
the update services, especially those that have limited computational
resources. Our system, by contrast, could be implemented with
lower cost hardware, is agnostic to the update delivery method, and
also protects against organizational-level attacks. It may be possible
to combine Uptane updates for higher-powered ECUs, which can
deliver updates to lower-power ECUs with assurance provided by
our method.

B. Impact on Independent Mechanics and Vehicle Enthusiasts

Hobbyists and other vehicle enthusiasts make up a community of
individuals who modify their vehicles’ ECU firmware in a process
known as “tuning.” Currently, various off-the-shelf products allow for
reprogramming of certain ECUs in various vehicle models. In theory,
our proposed scheme would disallow modification of manufacturer-
specified configuration parameters on factory-installed ECUs, which

would force tuners to adopt other strategies for modifying vehi-
cle performance. While disallowing modification of manufacturer-
specified parameters may be desirable for safety and environmental
reasons, it may also complicate enthusiast efforts to maintain their
own vehicles if default parameters are found to be detrimental to
vehicle performance or longevity. While our ECU security approach
may challenge hobbyist reconfiguration of ECUs, it will also enable
safe, assured ECU update application outside of an OEM’s prescribed
process, such as through independent mechanics or vehicle owners
themselves. As discussed earlier, adoption of our proposed scheme
would decrease the need to secure the entire transmission link
between the manufacturer and the vehicle for firmware updates.
Assuring firmware image integrity outside of the transmission process
could allow for a public, manufacturer-agnostic, royalty-free ECU
update standard to be developed, allowing any manufacturer, me-
chanic, or enthusiast to update firmware. Even if a person were to
obtain firmware update images from a third-party source, our update
validation mechanism would detect whether or not the image has been
modified, preventing attackers from attacking vehicles by uploading
malicious firmware on third-party websites.

As vehicles that adopt our proposed update validation scheme age,
manufacturers will likely drop warranty support for these vehicles,
and at some point may stop providing firmware updates altogether.
Enthusiasts who wish to continue maintaining and repairing these
older vehicles may be forced to resort to other methods in order to
continue maintaining these vehicles.

Therefore, a constructive discussion regarding the merits of allow-
ing ECU “jail breaking” for repair purposes on older, out-of-warranty
vehicles is warranted, especially in the wider context of the right-to-
repair movement.

C. Cross-ECU Firmware Validation

Even if all ECUs on a vehicle can individually have their firmware
images assured, it makes little difference if there is no means for
an entire system to similarly be assured. Our proposed scheme is
not intrinsically extendable to inter-ECU firmware validation. There
have been some other approaches that have been used to assure that
devices have valid firmware loads, as well as new techniques that
specifically fulfill the need for ECUs to cross-validate.

Research has applied blockchain principles, which have been used
for Internet of Things (IoT) device update verification [45], to solve
the problem of cross-ECU firmware validation. One implementation
developed by Falco and Siegel uses Distributed Hash Tables to reduce
the computational burden of cross-ECU firmware validation [46].

D. Scheduling ECU Updates

It is important to consider what times are allowable for a vehicle
that needs to update its ECUs. If ECU updates are allowed at
all times, then attackers could attempt to update target ECUs at
inopportune times, such as when the vehicle is in motion, or right
before the vehicle operator wishes to use the vehicle. If ECU updates
can be performed within one or two message cycles, the effects of an
inopportune update may be minimal, but many devices may require
many minutes or hours to fully reprogram. An attacker that is able to
trick an ECU into updating at an inopportune time can effectively turn
even a valid ECU update per our proposed scheme into potent denial
of service tool. While we have not provided a mitigation for this
type of attack, others have examined this problem and have proposed
solutions. One proposed method attempts to identify when a vehicle
will be idle for a long period, with the prediction used to schedule
ECU updates appropriately [47].



VII. CONCLUSIONS

In this paper, we have demonstrated how our proposed PKI-
based ECU update assurance scheme can be adopted by automotive
manufacturers and Tier-1 Suppliers to ensure that ECU firmware
and configurations can be validated on-ECU. This approach can
effectively prevent malicious ECU firmware updates from being
installed on vehicles. By providing a means for any given ECU to
validate that both its Tier-1 Supplier and the vehicle manufacturer
have approved a given update, the security of the update repository
and the transmission mechanism for said update becomes far less
important, thus enabling manufacturers to focus more time and money
on securing other vehicle vulnerabilities.

We also believe that the adoption of a strong PKI system for ECU
updates within the automotive sector may also inspire automotive
companies to adopt other PKI-based solutions to secure other aspects
of their business. Systems like the US DoD’s CAC could be used
by automotive manufacturers to better secure their systems against
unauthorized use, by requiring their employees to use a physical token
instead of a password to access critical systems. Our proposed system
could even be adopted by the producers of manufacturing machinery
to secure them against exploitation, an emerging security threat that
is only recently being taken seriously [48].

We acknowledge that our proposed scheme will take time, effort,
and most importantly financial backing to support adoption. Auto-
motive manufacturers are typically very cost-conscious, and will not
adopt proposals such as ours unless there is a clear financial benefit
to doing so, or financial consequences of not adopting our proposal
and instead risking an in-the-wild malicious ECU exploit. The cost
for implementing our proposed scheme will drop as newer ECU-
grade chip sets either become fast enough to perform cryptographic
operations quickly, cryptographic extensions become included in
automotive-grade chipsets by default, or the cost for add-on cryp-
tograhic hardware continues to fall.
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VIII. ACRONYMS

Advanced Package Tool (APT)
Common Access Card (CAC)
Controller Area Network (CAN)
Department of Defense (DoD)
Defense Enrollment Eligibility Reporting System (DEERS)
Elliptic Curve Digital Signature Algorithm (ECDSA)
Electronic Control Unit (ECU)
GNU Privacy Guard (GPG)
HyperText Transport Protocol (HTTP)
Hardware Security Module (HSM)
Internet of Things (IoT)
On-board diagnostics (OBD)

Public Key Cryptography (PKC)
Public Key Infrastructure (PKI)
Real-Time Automated Personnel Identification System (RAPIDS)
Robot Operating System (ROS)
Red Hat Package Manager (RPM)
Rivest–Shamir–Adleman (RSA)
Secure Sockets Layer (SSL)
Transport Layer Security (TLS)
Trusted Platform Module (TPM)
Original Equipment Manufacturer (OEM)
Vehicle-to-Vehicle (V2V)
Vehicle-to-Infrastructure (V2X)
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