
Localization Uncertainty-driven Adaptive Framework for Controlling
Ground Vehicle Robots

Daniel Kent1, Philip K. McKinley2 and Hayder Radha1

1Department of Electrical and Computer Engineering
2Department of Computer Science and Engineering

Michigan State University, East Lansing, Michigan, USA
(kentdan3@egr.msu.edu, mckinley@cse.msu.edu, radha@egr.msu.edu)

Abstract—Modern localization techniques allow ground vehicle
robots to determine their position with centimeter-level accuracy
under nominal conditions, enabling them to utilize fixed maps
to navigate their environments. However, when localization mea-
surements become unavailable, the position accuracy will drop
and uncertainty will increase. While research and development
on localization estimation seeks to reduce the severity of these
outages, the question of what actions a robot should take under
high localization uncertainty is still unresolved, and can vary
on a platform-by-platform and mission-by-mission basis. In this
paper, we exploit localization uncertainty measures to adapt
system control parameters in real time. Offline, we optimize
non-linear activation functions whose control parameters and
relevant weights are trained and learned using Evolutionary Al-
gorithm (EA). Subsequently, in real time, we apply the optimized
adaptation functions to the controller look-ahead distance and
intermediate linear and angular velocity commands, which we
identify as the most sensitive to localization error. Evolutionary
runs are conducted in which a simulated target vehicle is tasked
with following a randomly generated path while minimizing
cross-track error, with time varying localization uncertainty
added. These runs produce situation-dependent weights for
parameters to the adaptation functions, which are transferred
to the physical platform, a 1:5-scale autonomous vehicle. In
simulation, our system was able to reduce cross-track error,
which in certain cases exceeds 250 centimeters on non-adapted
systems, to below 15 centimeters on average using EA-derived
weights and parameters applied to our proposed adaptation
system. Evaluation on the physical platform demonstrates that
without the adaptation module in place, the platform is unable
to successfully follow the path; with the adaptation module,
the platform automatically adjusts its velocity and look-ahead
distance to compensate for localization uncertainty.

Index Terms — autonomous vehicle, localization, path
planning, uncertainty, evolutionary robotics, Robot Oper-
ating System

I. INTRODUCTION

The capabilities of automated ground vehicle robots have
advanced significantly over the past two decades, with many
companies planning to release automated vehicles commer-
cially in the near future. However, a question highly relevant
to autonomous vehicles remains unanswered: What actions
are appropriate for a vehicle to take when its localization
uncertainty exceeds acceptable thresholds? For autonomous
vehicles, centimeter-order uncertainty is required to safely
utilize lane center information for path planning purposes [1].

However, the appropriate action under a given level of uncer-
tainty will depend on the specific platform and environment.

Solutions to this problem attempt to maintain acceptable
localization estimates when world-referenced positioning is
reduced or unavailable. Localization results from Global Nav-
igation Satellite System (GNSS) alone are generally not used
for automated vehicle navigation, as commonly encountered
environs such as tunnels and urban canyons can reduce the
accuracy of or even outright block GNSS positioning capa-
bilities. Inertial Navigation Systems (INS) fuse the global-
frame localization results from GNSS with local odometry and
sensor data, such as Inertial Measurement Unit (IMU) data,
to produce a continuous localization estimate through the use
of Kalman filters [2], factor graphs [3], or other techniques.
Since local sensor and odometry data is subject to process and
sensor noise, causing the estimate to lose accuracy over time,
typically these errors are periodically corrected with global
reference data such as that from GNSS. However, if GNSS
is denied or otherwise unavailable, the localization errors
will continue to grow unbounded. If localization uncertainty
exceeds a certain point, successfully following paths defined
in the global reference frame becomes difficult and potentially
hazardous, if not impossible. While much research has focused
on reducing localization uncertainty and error, and a limited
body of work addresses localization uncertainty on platforms
that are permitted to explore their environments [4], there is
limited research on adapting to localization uncertainty into
path-following platforms with limited capacity for error.

In this paper, we investigate the application of evolutionary
search to determine how robot platforms should respond to
high localization uncertainty, as well as whether a non-linear
activation function can effectively adapt the system in such sit-
uations. In the process, we determine what adaptations, if any,
reduce operational error during periods of high localization
uncertainty, and at what level(s) of uncertainty each adaptation
activates. The target platform for this study, shown in Figure 1,
is a 1:5-scale vehicle based on an open platform developed
for the study of autonomous driving [5]. Evolutionary runs
conducted using a simulation model of this vehicle revealed
sets of adaptation parameters that each performed better under
intermittent uncertainty, than a non-adaptive system; indeed,
in some cases the non-adaptive system was unable to perform
path following at all. Experiments on the physical platform

Copyright © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

confirmed these results under actual changes in localization
uncertainty.

Fig. 1. MSU EvoRally, a 1:5-scale vehicle constructed at Michigan State
University, based on AutoRally, an open platform developed by researchers
at Georgia Tech [5].

This work contributes two specific ideas: (1) the use of
non-linear adaptation functions as specific implementations for
localization uncertainty that can be applied to system inputs,
parameters, and outputs in real time, and (2) the use of EAs to
evaluate these adaptations for applicability and determine their
optimal values. The adaptation equations can be applied to a
variety of different platforms and platform components, and
the EA scales well to an increasing number of these adaptation
parameters.

The remainder of this paper is organized as follows. Sec-
tion II provides background on the localization problem and
evolutionary robotics. Section III describes the experimental
setup, including details of the MSU EvoRally platform, the
evolutionary search framework, the localization uncertainty
model, and the specific parameters exposed to evolutionary
pressures. Section IV presents the results of the evolution runs,
and Section V describes validation on the physical vehicle.
Finally, Section VI draws conclusions and discusses possible
future directions.

II. BACKGROUND AND RELATED WORK

We begin by providing background on the localization
problem and evolutionary search as applied to robotics.

A. Localization in Ground Vehicle Robots

Precision localization is an important function for ground
vehicle robots; with centimeter-level accuracy, ground vehicle
robots can navigate previously mapped lanes on roadways [1],
which simplifies lane keeping down to a path following
problem. Aqel et al. [6] point out that while several tech-
niques fulfill the accuracy requirement, each has trade-offs.
For example, Real-Time Kinematic (RTK) GNSS and other
differential GNSS techniques can reduce standard satellite
navigation uncertainty to centimeter or millimeter range, but
require an unobstructed view of the sky. Inertial Navigation
Systems (INSs) can provide short-term dead reckoning es-
timates using accelerometers in the absence of other data,

but are prone to drift over long periods of time. Lidar can
report precise distances to surrounding objects, which can
be used for lidar map-based localization [7] or for odometry
generation through Simultaneous Localization and Mapping
(SLAM) [8]. However, these methods may not work well for
areas with few vertical features [9]. Cameras can be used
to generate odometry information, but substantial compute
power is needed to process the images, and this approach
is sensitive to environmental conditions such as weather.
Moreover, monocular camera odometry could contain a non-
static scale uncertainty that can cause errors in the visual
odometry estimate [10]. Even if multiple techniques are fused,
localization errors can arise if one or more technique is subject
to high uncertainty, or if a technique becomes unavailable due
to equipment failure.

Given the potential vulnerabilities of all localization sys-
tems, it is important that ground vehicle robots have the ability
to detect increases in localization uncertainty and respond
appropriately. While many techniques are able to report uncer-
tainty, the appropriate response will vary by platform, applica-
tion, and mission. For instance, probabilistic approaches have
been shown to be effective in mapping uncertain environments,
but primarily target robotic platforms that are permitted to
explore their environments, such as interplanetary rovers [4].
In this paper, we explore the potential role of evolutionary
algorithms (EAs) as a means to find parameter values for
adapting to localization uncertainty on platforms required to
follow specific paths with high precision.

B. Evolutionary Robotics

Modern robots are highly complex; a small change to a
parameter of a single subsystem might produce significant
changes in performance. For example, a small adjustment of
gain in a controller on a robot could cause the entire system to
exhibit undesirable behavior, such as oscillatory motion around
the desired control signal. The optimal value for this gain could
in turn be influenced by other factors in other subsystems.
Tuning a robot’s parameters can be a tedious, manual task,
which has driven research on alternative ways to find optimal,
or at least suitable, sets of parameters.

Researchers in the field of evolutionary robotics (ER) [11]
have sought to harness the search capabilities of EAs in
designing the control and morphology of robots. By operating
in an open-ended manner, unconstrained by human precon-
ception and bias, these algorithms can find unconventional
solutions to problems as well as reveal situations that might
cause the system to fail [12], [13]. In order to avoid damage
to physical robots, evolution is usually conducted in sim-
ulation. A typical approach uses a genetic algorithm (GA)
to optimize characteristics (e.g., controller parameters, sensor
configurations) of the robot. Each individual in a population
represents a possible software/hardware configuration of the
target platform, whose performance is evaluated with respect
to a fitness function. Those individuals with high fitness are
selected to pass genes to the next generation. Over generations,
performance of the task improves and eventually plateaus,

yielding one or more potential solutions, which can then
be tested in physical robots. Differences between simulated
performance and actual performance, referred to as the reality
gap [14]–[17], are analyzed and used to modify the simulation
models. The process is repeated until a satisfactory solution
is produced.

EAs are not the only optimization method that can be used
to optimize parameters for robotics applications. In addition to
classical methods, machine learning-based techniques such as
gradient descent and reinforcement learning (RL) have been
used to develop and optimize control systems. However, gra-
dient descent-based algorithms are difficult to parallelize [18],
and RL techniques typically use gradient descent to optimize
parameters, whereas EAs are much more conducive to decen-
tralized evaluation. While RL can incorporate EAs to perform
parameter search [19], we opted to use EAs directly to discover
optimal parameters.

C. Evo-ROS

Evolutionary approaches have yielded effective designs for
terrestrial, aquatic, and aerial robots [11]. However, ER robots
and their environments tend to be relatively simple, due in
part to the high computational cost of evolutionary runs.
Moreover, using simplified models increases the reality gap.
Recently, Silva et al. [20] addressed this issue and pointed
out the benefits of using tools from the mainstream robotics
community in ER simulations. For example, an increasing
number of robotic systems and autonomous vehicles utilize
software infrastructures based on the Robot Operating System
(ROS) [21]; an advantage of ROS is that code developed and
tested for a simulated robot can be deployed and executed
directly on the corresponding physical robot.

Simon et al. [22] recently developed Evo-ROS, which
extends evolutionary search to robots whose software infras-
tructure is based on ROS. Evo-ROS currently uses the Gazebo
physics-based simulator, which is often coupled with ROS and
provides tested models of many commercially-available hard-
ware components, although other simulators could be used.
Evo-ROS has previously been applied to increase robustness
of ground vehicle robots by optimizing sensor placement
and redundancy in the presence of component failure and
damage [22]. In addition to optimizing physical characteristics
of the platform, Evo-ROS can be used to optimize software
components and parameters. For example, Langford et al. [23]
combined Evo-ROS with novelty search [24] in order to op-
timize the throttle controller on EvoRally, the target platform
of the current study.

III. EVOLUTIONARY PROCESS AND DESIGN

Our experiments were conducted in two stages. The first
stage constituted Evo-ROS runs with the simulated robot
in order to find weights for adaptation parameters based
on simulated localization uncertainty. In the second stage,
we tested those parameters on a physical robot platform to
determine how these adaptation parameters affect performance

and whether the evolved adaptation produced a system that
was more robust to localization uncertainty.

A. Ground Vehicle Platform

Although the proposed approach is applicable to many
autonomous vehicles, the demonstration system in this study
is the MSU EvoRally vehicle shown in Figure 1. EvoRally
is based on the open-source AutoRally platform developed at
Georgia Tech; Goldfain et al. have published a comprehensive
description of their system’s hardware and software [5]. The
vehicle’s chassis is borrowed from a gas-powered 1:5 scale
remote-controlled truck; the engine is replaced with an electric
motor, and many mechanical components are replaced with
stronger versions to accommodate the weight of computing
equipment and sensors. A custom compute box houses a quad-
core processor, 32GB RAM, 2TB SSD, and a GPU for real-
time image processing. Sensors include a high-precision IMU,
RTK GNSS, Hall-effect rotation sensor on each wheel, and two
front-facing machine vision cameras; the completed vehicle
weighs 46 lbs and has a top speed of 60 mph. Our platform was
built with similar hardware specifications as the one described
in [5], with changes made to attach and integrate a different
GNSS receiver, among other modifications. For the Evo-ROS
simulation of the vehicle, we reused and expanded simulation
code developed by the Georgia Tech group.

As noted above, the vehicle’s software infrastructure is
based on ROS, where individual functions are realized as sep-
arate executables, enabling us to easily exchange components
such as controllers with off-the-shelf or experimental software.
For this study, we replaced the default ROS navigation stack
and implemented the platform’s path following software as
a two stage controller. The first controller stage utilizes a
Pure-Pursuit based algorithm implemented previously by the
Autoware project [25]. The algorithm takes an input path and
converts it into a desired linear and angular velocity, or twist,
based on a point on the path chosen in front of the platform;
the distance to this point is known as the look-ahead distance,
and the chosen point the look-ahead point. In the second stage,
this twist is converted into platform-specific throttle, steering,
and braking commands using a proportional-integral-derivative
(PID) controller. The traditional Pure Pursuit algorithm com-
putes the look-ahead point deterministically using either a
fixed look-ahead distance, or a simple varying look-ahead
distance that depends on a measure such as current vehicle
speed [26]. Similarly, even though the twist command output
from the Pure Pursuit algorithm is derived from the vehicle’s
current position and is implicitly sensitive to localization error,
traditional PID controllers do not incorporate localization
uncertainty as a parameter used to calculate platform-specific
commands.

While PID controllers may not be as robust for path fol-
lowing as other types of controllers, such as Model Predictive
Control (MPC) controllers, our PID-based controller is adapt-
able to different platforms, and only requires modification of
the specific output commands and tuning the gains of the
PID controller. In addition, MPC-based controllers for ground

vehicles incorporate similar parameters such as look-ahead
distance [27] that could be adapted in real time using our
proposed method and optimized using EAs. While this two-
stage control method works well when the measured and/or
estimated position is accurate, inaccurate localization data can
result in poor path following performance, potentially putting
at risk the vehicle, its surroundings, or bystanders.

B. Adaptation, Evolution, and Fitness Parameters
To address localization uncertainty, we first identified three

specific parameters in our system that were the most sensitive
to localization uncertainty: the configured look-ahead distance
within the pure pursuit module, as well as the output linear and
angular velocity commands. We developed a novel uncertainty
adaptation module that could adjust the look-ahead distance
and velocity commands in real time based on the estimated un-
certainty into the two-stage control algorithm explained above.
As shown in Figure 2, the uncertainty adaptation module
reads in the current localization uncertainty, and uses it to
adjust system parameters in real time. Without the uncertainty
adaptation module, the direct output of the pure pursuit module
is used as the input of the twist controller, with the look-
ahead distance remaining fixed. With the module in place,
the localization uncertainty as computed by the localization
subsystem is used to adjust the look-ahead distance and reduce
the commanded linear and angular velocities as localization
uncertainty increases.

Fig. 2. Software flow diagram showing Uncertainty Adapter node adjusting
data and parameters across multiple controller subsystems. Thick lines indicate
flows that are active when the Uncertainty Adapter module is enabled, and
dashed lines indicate flows that are active when the Uncertainty Adapter
module is disabled.

The specific equations we developed for adapting system
parameters are based on a Rectified Linear Unit (ReLU) acti-

TABLE I
ADAPTATION PARAMETERS (GENES) FOR EVOLUTION

Equation Minimum Maximum
Wx 1 0 10
Wθ 2 0 10
Ox 1 0 1
Oθ 2 0 1
Lb 3 Lmin Lmax

Lmin 3 0.5 Lmax

Lmax 3 Lmin 10
WL 3 -5 5
OL 3 0 1

vation function, and was partially inspired by formulations of
non-linear activation in the field of machine learning [28][29].
The model function appears in Equation 1. The function
takes in a nominal parameter value, x, and an uncertainty
measure, σx, and outputs an adjusted parameter value, x̂. This
function in its basic form has two parameters that are fixed:
the weight, or slope, of the activation function, Wx; and the
offset, or minimum activation level, Ox. The equation can also
be clamped between certain values if necessary, shown as xmin

and xmax. Equation 1 can be modified for multiple types of
parameters and data on a variety of robot platforms.

x̂ = clamp{xmin,xmax}(x× (1−Wx)× relu(σx −Ox)) (1)

Given our identification earlier of the three target parameters
(look-ahead distance L, output linear velocity command Vℓ,
and output angular velocity command Vθ), we implemented
three equations, which appear as Equations 2, 3, and 4. Each
of the twist adaptation equations require the weight and offset
parameters to be determined. The look-ahead equation by
contrast has five parameters; in addition to the weight and
offset parameters, the minimum, maximum, and base look-
ahead parameters must be determined. Importantly, the weight
for the look-ahead is scaled such that it can take positive or
negative values, and the EA is restricted to choosing base,
minimum, and maximum look-ahead distances between 0.5
and 10 meters. Combined, the three equations yield nine
parameters (a.k.a. genes that are subject to evolution using
the EA; these are listed in Table I.

L̂ = clamp{Lmin,Lmax}(L×(1−Wl)×relu(||Σ||F−Ol)) (2)

V̂ℓ = clamp{0,Vℓ}(Vℓ× (1−WVℓ
)×relu(||Σ||F −OVℓ

)) (3)

V̂θ = clamp{0,Vθ}(Vθ×(1−WVθ
)×relu(||Σ||F −OVθ

)) (4)

Our objective is to employ a measure of the localization
uncertainty to adapt the values of the linear velocity, an-
gular velocity, and look-ahead distance in real time. Here,
we employed the Frobenius norm ||Σ||F of the localization
covariance matrix Σ as a measure of uncertainty that guides
our adaptation framework. It is possible that other, potentially
more-complex, measures of uncertainty might be more effec-
tive in this optimization problem. This particular aspect of our
work is left for further investigation.

The fitness function we used for our EA takes the average
cross-track error, eavg , and distance along the path d the
adapted system is able to travel and calculates a fitness using
Function 5

f(d, eavg) = d× npdf(eavg, 0.25)

npdf(0, 0.25)
(5)

where npdf(a, σ) is the value of the probability distribution
function (pdf) for a zero-centered Gaussian pdf with standard
deviation σ evaluated at a. We used the Gaussian pdf to
calculate the fitness components from the cross-track error
in order to ensure the function was smooth and to minimize
the penalty for small amounts of cross-track error. The EA
was configured with a population size of 50 evolved over
the course of 25 generations. Genes were randomly uniformly
initialized subject to a 7.5% mutation rate and a 5% crossover
rate. We executed the EA 5 times with different random
number generator seeds in order to capture potential variation
in optimal sets of parameters.

C. Paths

A simulated path is generated as a semi-random set of
straight paths and curves, each segment of which has equal
length. Segments are allowed to turn left if the previous
segment is heading in the positive X direction or the negative
Y direction, or right if the previous segment is heading in
the positive X direction or the positive Y direction. These
turning restrictions prevent the path from turning in on itself
and guarantees that the robot cannot skip segments without
incurring a significant cross-track error, which can be detected
by an evaluation module. For this initial study, we kept the path
fixed; this path is shown in Figure 3. Future work will vary
the path once per EA run, and later may vary per generation
to further challenge population members.

Fig. 3. A specific path used in simulation during EA, with start and end
points marked. Grid size is 10 meters square.

D. Simulating Odometry and Uncertainty

To reduce the computational complexity of the simulation,
we developed a simplified approximation of an INS that uses
the simulated robot’s ground truth position and orientation, and
adds a time-dependent amount of Gaussian noise to the ground

TABLE II
TABLE OF RESULTS

Run Fitness Distance Avg. Cross-Track Error
1 71.992 112.5m 0.152m
2 60.992 85.25m 0.141m
3 62.635 112.25m 0.196m
4 71.604 88.2m 0.220m
5 69.367 80.2m 0.266m
Baseline 4.641 14.8m 0.380m

truth X and Y positions and the platform orientation. The
noisy position is then reported to the simulated platform along
with an uncertainty estimate, represented as a 3x3 Gaussian
covariance matrix, based on the amount of time-dependent
noise added to the simulation. We model uncertainty this way,
as it is possible to obtain similar types of uncertainty estimates
with a Kalman-based filter, such as an open-source software
implementation developed by Moore and Stouch for ROS [30].
While localization uncertainty may not necessarily be Gaus-
sian outside of simulations, the performance of Gaussian-
based localization filters is sufficient to achieve centimeter-
level accuracy using low-cost sensors [31]. Future work may
involve more challenging assumptions about the noise model
for localization uncertainty.

E. Simulation Monitoring

During the evaluation of each population member in the
EA, the simulation monitors and records average cross-track
error and distance for fitness evaluation. To reduce the time
spent simulating invalid or unsuitable genomes, the maximum
cross-track error is monitored, and if it exceeds 2.5 meters,
the simulation ends. Once the the simulation reaches 240
simulated seconds, the simulation ends.

IV. RESULTS OF EVOLUTIONARY SEARCH

A. Path Following Performance

The evolutionary runs discovered several sets of parameters
that were able to successfully adapt the system to periods of
high localization uncertainty. As shown in Table II, the top
genome, which came from run 1, was able to follow 112.5
meters of the path in 240 simulated seconds, with an average
cross-track error of 0.152 meters. By contrast, a simulated
non-adapted system with fixed look-ahead distance of 2.65m
and deterministic forward and angular commands was unable
to follow the path for the full 240 seconds, instead exceeding
the 250cm threshold during a period of high localization error.
The specific parameters varied between different genomes;
some genomes chose a positive weight for the WL parameter,
while others chose a negative weight, corresponding to an
increase and decrease in look-ahead distance, respectively, as
localization uncertainty increases. Figure 4 shows an example
of the improvement in path following behavior. Figure 5
reveals that the EA-derived parameters causes the system to
reduce the output forward and angular velocity commands
when uncertainty increases.

Fig. 4. Example of path-following performance of non-adapted (blue) and
adapted controller in simulation, using results from run 1. Grid size is 1 meter
square.

Early development of our adaptation functions used strictly
linear equations, which resulted in reductions in forward and
angular velocity commands even when uncertainty was low.
The introduction of the non-linear ReLU function as the
basis for our adaptation functions eliminated the steady-state
forward and linear velocity errors. In addition, the offset values
determined by the EA serve as a threshold that can measure
how sensitive each parameter is to localization error.

B. Evaluation of Fitness Function Effectiveness

Figure 6 plots the average and maximum fitness for one of
the evolutionary runs, demonstrating the objective improve-
ment of the fitness. Based on this result as well those in Table
II., we conclude that the fitness function effectively guided the
EA toward a suitable set of adaptation parameters that reduced
the platform’s average cross-track error as the uncertainty
increased and decreased throughout the simulations. Despite
the fitness function not factoring in maximum cross-track
error, the adapted systems’ maximum cross-track error stayed
well below the 250 centimeter threshold. EAs that incorporate
multi-objective optimization could be explored in the future to
determine if a trade-off exists between average and maximum
cross-track error for our application.

V. VALIDATION ON PHYSICAL ROBOT

To validate that a controller with evolved adaptation pa-
rameters performed adequately on a physical robot, we tested
path following on the EvoRally platform at the MSU Spartan
Mobility Village, a 330-acre space with natural areas as well
as winding and intersecting streets. The vehicle was configured
to utilize a graph-based localization filter as an input to the
controller to smooth localization results. The GNSS-derived
position covariance matrix was used as the input to the adap-
tation module, with differential GNSS measurements obtained
in real time from the Michigan Department of Transportation’s
Continuously Operating Reference Station (CORS) network.
A course was defined using a series of GNSS waypoints that
roughly formed a square in a parking lot, as shown in Figure 7.
The location of each waypoint was surveyed with RTK GNSS
using an RTK fix solution for accuracy; tape was laid out

Fig. 5. Forward velocity command profile (top) and steering command
(bottom) of adapted controller under uncertainty. Large shifts in angular
velocity command occurred as simulated GNSS position became highly noisy.

on the path for our benefit, but was not used by EvoRally’s
cameras for path following.

During testing, the GNSS solution provided by the plat-
form’s GNSS receiver fluctuated between RTK fix, RTK float,
and Single-Point Positioning (SPP). RTK Fix has the smallest
covariance, and SPP has the largest. These conditions provided
us an opportunity to evaluate the robot’s performance under
dynamic localization conditions, without the need to introduce
artificial noise.

When the adaptation module was not activated and the
GNSS solution was other than RTK fix, the vehicle deviated
significantly from the path, often requiring us to perform a
manual takeover of the vehicle in order to avoid an accident.
When the adaptation module was activated, the platform
automatically stopped if the localization solution was SPP,
would drive at full or near-full speed with a short look-ahead
distance when the solution was RTK fix, and would drive at
slower speeds with a longer look-ahead distance when the
solution was RTK float, as shown in Figure 8. In summary, our
localization adaptation module was able to successfully adapt

Fig. 6. Average and Maximum fitness scores achieved over the course of the
EA for Run 1.

Fig. 7. Photo of course with approximate positions of GNSS waypoints
marked in white tape.

to actual, changing GNSS fix qualities, without our having
explicitly programmed this behavior in response to changes in
GNSS fix type. Despite the difference in the simulated versus
actual paths, the adaptation module performed well, which
suggests that the reality gap may be small.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we investigated the application of evolutionary
search to the problem of adaptation in the presence of local-
ization uncertainty, developed a set of non-linear adaptation
equations to modify system parameters and outputs in response
to localization uncertainty, and optimized the parameters us-
ing an EA. These techniques improved the path following
performance of a simulated ground vehicle robot and were
successfully applied to the corresponding physical platform,
the MSU EvoRally vehicle. The use of non-linear activation
functions to adapt robots for localization uncertainty, as well
as the use of an EA to evaluate and adapt robot platforms for
localization uncertainty, may have application to other robot
platforms that rely on highly accurate localization results for
path planning purposes.

Fig. 8. Top: Logged commanded and adapted forward velocity on the platform
during testing. Bottom: Logged commanded and adapted angular velocity on
the platform during testing. Note the increase in uncertainty, which occurred
due to GNSS solution changing from RTK fix to RTK float.

This work can be extended in several ways. First, since
GNSS uncertainty is often location-dependent, with higher
lateral uncertainties occurring in natural or urban canyons, we
plan to integrate into our simulator more realistic models of
GNSS noise as well as location-dependent noise. Second, we
plan to combine Evo-ROS with novelty search, as in [23],
to create challenging scenarios that drive evolution. Such an
approach would generate a series of tests that vary the path
and the time-based and location-based uncertainty; evolving
against these scenarios would likely produce a more robust
solution. Parameters chosen might include specific path se-
quences as well as points on the map where localization uncer-
tainty is increased. Third, since localization uncertainty affects
obstacle avoidance, future testing will include obstacles and
additional adaptation parameters related to obstacle avoidance.
Finally, we also plan to evolve parameters for other types of
ground vehicle robot platforms such as full-scale automated
vehicles.

ACKNOWLEDGEMENTS

This work has been supported in part by the U.S. National
Science Foundation under grant DBI-0939454, by the U.S.
Air Force Research Laboratory under agreements FA8750-16-
2-0284 and FA8750-19-2-0002, and by the MSU Foundation
Strategic Partnership Grants (SPG) program. We would like to
thank Brian Goldfain of the Georgia Institute of Technology
for the design and documentation of the AutoRally platform,
and for providing technical assistance with hardware and
software used in this research. We also thank Glen Simon,
Jared Clark and Jonathon Fleck for the development of Evo-
ROS and the construction of the MSU EvoRally platform. We
thank Steven Yik, who provided assistance in fabricating parts
for the robot; without his timely assistance this paper would
not have been possible.

REFERENCES

[1] M. Schreiber, C. Knöppel, and U. Franke, “Laneloc: Lane marking
based localization using highly accurate maps,” in 2013 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2013, pp. 449–454.

[2] P. Goel, S. I. Roumeliotis, and G. S. Sukhatme, “Robust localization us-
ing relative and absolute position estimates,” in Proceedings of the 1999
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Human and Environment Friendly Robots with High Intelligence and
Emotional Quotients (Cat. No. 99CH36289), vol. 2. IEEE, 1999, pp.
1134–1140.

[3] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep., 2012.

[4] C. Olson, “Probabilistic self-localization for mobile robots,” IEEE
Transactions on Robotics and Automation, vol. 16, no. 1, pp. 55–66,
2 2000.

[5] B. Goldfain, P. Drews, C. You, M. Barulic, O. Velev, P. Tsiotras, and
J. M. Rehg, “Autorally: An open platform for aggressive autonomous
driving,” IEEE Control Systems Magazine, vol. 39, no. 1, pp. 26–55,
2019.

[6] M. O. Aqel, M. H. Marhaban, M. I. Saripan, and N. B. Ismail, “Review
of visual odometry: types, approaches, challenges, and applications,”
SpringerPlus, vol. 5, no. 1, p. 1897, 2016.

[7] M. Bosse and R. Zlot, “Continuous 3d scan-matching with a spinning
2d laser,” in Proceedings of the 2009 IEEE International Conference on
Robotics and Automation. IEEE, 2009, pp. 4312–4319.

[8] H. Alismail, L. D. Baker, and B. Browning, “Continuous trajectory
estimation for 3d slam from actuated lidar,” in Proceedings of the 2014
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 6096–6101.

[9] S. Pang, D. Kent, X. Cai, H. Al-Qassab, D. Morris, and H. Radha,
“3d scan registration based localization for autonomous vehicles-a
comparison of ndt and icp under realistic conditions,” in Proceedings
of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall).
IEEE, 2018, pp. 1–5.

[10] B. M. Kitt, J. Rehder, A. D. Chambers, M. Schonbein, H. Lategahn,
and S. Singh, “Monocular visual odometry using a planar road model
to solve scale ambiguity,” in Proceedings of European Conference on
Mobile Robots, 2011.

[11] S. Nolfi, J. Bongard, P. Husbands, and D. Floreano, “Evolutionary
robotics,” in Handbook of Robotics, B. Siciliano and O. Khatib, Eds.
Springer, 2016.

[12] “Awards for human-competitive results produced by genetic and evolu-
tionary computation,” competition held as part of the annual Genetic and
Evolutionary Computation Conference (GECCO), sponsored by ACM
SIGEVO. Results available at http://www.human-competitive.org.

[13] A. J. Ramirez, A. C. Jensen, B. H. C. Cheng, and D. B. Knoester,
“Automatically exploring how uncertainty impacts the behavior of
dynamically adaptive systems,” in Proceedings of the 26th International
Conference on Automated Software Engineering, Lawrence, Kansas,
November 2011, pp. 568–571.

[14] R. A. Brooks, “Artificial life and real robots,” in Proceedings of the First
European Conference on Artificial Life. MIT Press, Cambridge, MA,
1992, pp. 3–10.

[15] N. Jakobi, “Running across the reality gap: Octopod locomotion evolved
in a minimal simulation,” in Proceedings of the First European Workshop
on Evolutionary Robotics. Paris, France: Springer-Verlag, 1998, pp.
39–58.

[16] J. C. Bongard and H. Lipson, “Once more unto the breach: Co-evolving
a robot and its simulator,” in Proceedings of the Ninth International
Conference on the Simulation and Synthesis of Living Systems, Boston,
Massachusetts, USA, 2004, pp. 57–62.

[17] S. Koos, J. B. Mouret, and S. Doncieux, “Crossing the reality gap in evo-
lutionary robotics by promoting transferable controllers,” in Proceedings
of the 2010 ACM Genetic and Evolutionary Computation Conference.
Portland, Oregon, USA: ACM, 2010, pp. 119–126.

[18] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochas-
tic gradient descent,” in Advances in neural information processing
systems, 2010, pp. 2595–2603.

[19] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, “Evolutionary
algorithms for reinforcement learning,” Journal of Artificial Intelligence
Research, vol. 11, pp. 241–276, 1999.

[20] F. Silva, M. Duarte, L. Correia, S. M. Oliveira, and . A. L. Christensen,
“Open issues in evolutionary robotics,” Evolutionary Computation,
vol. 24, no. 2, pp. 205–236, 2016.

[21] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in IEEE ICRA Workshop on Open Source Software, vol. 3,
no. 3.2, Kobe, Japan, 2009.

[22] G. A. Simon, A. J. Clark, J. M. Moore, and P. K. McKinley, “Evo-ROS:
Integrating evolution and the Robot Operating System,” in Proceedings
of the Genetic and Evolutionary Computation Conference Companion
(Workshop on Evolutionary Computation Software Systems), Kyoto,
Japan, July 2018, pp. 1386–1393.

[23] M. A. Langford, G. A. Simon, P. K. McKinley, and B. H. C. Cheng,
“Applying evolution and novelty search to enhance the resilience of
autonomous systems,” in Proceedings of the 14th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems,
Montreal, Quebec, Canada, May 2019.

[24] J. Lehman and K. O. Stanley, “Exploiting open-endedness to solve
problems through the search for novelty,” in Proceedings of the Eleventh
International Conference on Artificial Life (ALIFE XI). Cambridge,
MA, USA: MIT Press, 2008.

[25] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada, “An open approach to autonomous vehicles,” IEEE Micro,
vol. 35, no. 6, pp. 60–68, 2015.

[26] S. F. Campbell, “Steering control of an autonomous ground vehicle
with application to the DARPA urban challenge,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2007.

[27] G. V. Raffo, G. K. Gomes, J. E. Normey-Rico, C. R. Kelber, and L. B.
Becker, “A predictive controller for autonomous vehicle path tracking,”
IEEE Transactions on Intelligent Transportation Systems, vol. 10, no. 1,
pp. 92–102, 2009.

[28] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best
multi-stage architecture for object recognition?” in Proceedings of the
2009 IEEE 12th International Conference on Computer Vision. IEEE,
2009, pp. 2146–2153.

[29] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th International Conference
on Machine Learning (ICML-10), 2010, pp. 807–814.

[30] T. Moore and D. Stouch, “A generalized extended Kalman filter imple-
mentation for the robot operating system,” in Proceedings of the 13th
International Conference on Intelligent Autonomous Systems (IAS-13).
Springer, July 2014.

[31] Y. Zhuang, Q. Wang, M. Shi, P. Cao, L. Qi, and J. Yang, “Low-power
centimeter-level localization for indoor mobile robots based on ensemble
Kalman smoother using received signal strength,” IEEE Internet of
Things Journal, 2019.

