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Abstract—Iterative closest points (ICP) and normal 

distributions transform (NDT) are popular 3D point cloud 

registration algorithms, which have been widely used in mapping 

and 3D reconstruction.  These algorithms provide robust 

methods for self-localizing an autonomous vehicle by registering 

real-time 3D-scans to a prior map.  However, urban and 

suburban environments are continually changing, resulting in 

significant differences that impact registration algorithms.  These 

temporal changes occur over varying time-scales, and include 

dynamic and ephemeral objects (such as parked cars), seasonal 

changes (vegetation, snow, dust), and human impacts such as 

construction.  It is critical that a self-localization method be 

robust to these and other real-environment changes.  

Furthermore, the computational complexity of the algorithm and 

its stability and ability to process data in real-time when faced 

with such adverse conditions are important. In this paper, we 

present an empirical comparison of NDT and ICP and their 

performances for autonomous vehicle localization through a set 

of realistic field tests conducted in the state of Michigan over 

many months spanning the summer, fall, and winter months. The 

test sites include the campus of Michigan State University and 

the University of Michigan’s MCity Test Facility, which is a 

professional purpose-built proving ground for testing 

autonomous vehicles and technologies. Our tests indicate that 

NDT possesses a better ability to handle realistic adversity 

conditions such as static and dynamic environmental changes, as 

well as being more computationally efficient. 
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I. INTRODUCTION 

Self-driving vehicles must sense their environments, 
localize themselves, plan routes and apply vehicle control to 
traverse these paths.  Of these tasks, localization is critical as 
all other key sub-systems rely either fully or partially on the 
performance of the localization algorithm. In particular, the 
update rate for localization has to be faster than the other 
components. Arguably, the two most popular localization 
algorithms based on 3D point cloud registration are iterative 
closest point (ICP) and normal distributions transform (NDT) 
algorithms[1]–[3]. Although these methods have been studied 
in numerous prior efforts, a thorough comparison of their 
performance under realistic conditions for autonomous driving 
applications has not been conducted. Magnusson et al. 
conducted a comparison of ICP and NDT based on 3D 
mapping field experiment in mine tunnels [4]. However, there 

is a need to evaluate the robustness of these popular algorithms 
under diverse environmental changes typical of vehicular 
roadways. For example, a reference map developed under the 
favorable conditions of a clear summer day will need to be 
registered to in different seasons, such when the leaves have 
fallen in the autumn, and when the road and other major 
landmarks are covered with snow in the winter. Additionally,   
temporary or permanent structural changes to the road or 
surrounding structures should also not prevent successful 
registration. Temporary or ephemeral objects (such as parked 
vehicles) also pose a challenge to registration and precise 
localization as they may occlude and/or create features. 
Furthermore, localization must be achieved in real-time with 
low-latency. All these aspects of localization represent 
important and practical considerations in selecting a solution 
for autonomous driving where safety is of a paramount 
importance.  

In this paper, we present an evaluation and comparison of 
NDT and ICP and their performances for autonomous vehicle 
localization under diverse environmental conditions. We have 
tested other variants of ICP and NDT, but considering the 
essences of the algorithms are similar and the space of this 
paper is limited, we only show the result of the comparison 
between standard ICP and NDT. Our study is based on a set of 
realistic field tests conducted in the state of Michigan over nine 
months spanning the summer, fall, and winter. The test sites 
include the campus of Michigan State University and the 
University of Michigan’s MCity Test Facility, which is a 
professional purpose-built proving ground for testing 
autonomous vehicles and technologies. The reference maps 
were developed professionally by a mapping company for all 
sites included in our study. A high precision positioning system 
capable of providing centimeter-level precision was employed 
to provide near-groundtruth precision for the purpose of 
evaluating the true performance of both the ICP and NDT 
algorithms. Our extensive tests show that NDT possesses better 
ability to handle realistic adversity conditions such as static and 
dynamic environmental changes and is more computational 
efficient. 

The remainder of the paper is organized as follows: Section 
Ⅱ briefly covers the basic introduction to ICP and NDT that 
provided the foundation for this work. Section Ⅲ describes the 
main constraints and unique challenges for the 3D scan 
registration based localization. Section Ⅳ presents the results 
of the experiments performed over many months spanning the 



 

 

summer, fall, and winter months. Section Ⅴ concludes and 
summarizes the paper. 

II. BACKGROUND AND RELATED WORK 

A. ICP 

The ICP algorithm iteratively minimizes point to point 
distances between an input scan and a reference point cloud 
[1], [2]. In each step, the closest reference point to each scan 
point are selected, and the rotation and translation, R and t 
respectively, are calculated that minimize the sum of squared 
distances: 
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where im  and jn  are the thi  and thj  point vector from two 

point sets m and n. M and N are the number of points in the set 

m and set n, respectively. ,i jw  are the weights for a pair of 

matching points. If im  is the closest point to jn , then , =1i jw , 

otherwise , =0i jw . 

B. NDT 

Instead of using the individual points of the point cloud as 
in ICP, NDT transforms the set of 3D data-points residing 
within a voxel into a normal distribution [3]. For voxel k, an 

average kp  and covariance matrix k  are calculated as 

follows; 
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point vector of data-point i residing in voxel k, and kM  is the 

number of points in voxel k. For points in the input scan 

X = x
i
,(i = 0...N -1) , the transformation equations are given 

as follows: 

i i = +x Rx t  

where R  is a rotation matrix parameterized by Euler angles 

  ， ， , and ( , , )t
x y zt t t =t  is the translation vector. The 

registration is a parameter search problem that finds the best 

transformation ( , )'= R tT for the input scan to match the 

reference scan. The measure function (some paper also called it 

the negative-score (-score) function [3]) is defined as follows: 
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where ip  and i  are the corresponding average and 

covariance matrix of the reference scan. Newton’s method is 

used to finding the best transformation T to minimize ( , )E X T

[5]. 

III. CONSTRAINTS AND CHALLENGES FOR 3D SCAN 

REGISTRATION BASED LOCALIZATION 

Autonomous driving imposes a unique set of challenges to 
3D-scan registration based localization. First is the major 
differences between the reference 3D map and the real-time 3D 
point-cloud scans captured by the vehicle.  Changes in urban 
and suburban environments must not prevent correct alignment 
between scans and a reference map. Second is the need to 
perform low-latency, real-time localization. Unlike mapping 
and reconstruction, which can be done offline, the autonomous 
driving system must make real-time decisions based on vehicle 
localization.  Latency in localization will result in reduced 
performance. Third is the need to eliminate all gross errors, as 
these will have large deleterious effects on the other upper 
level modules that depend on localization. 

A. The ability to handle environmental changes 

High-resolution reference maps may be updated much less 
frequently than changes to the environment. These changes can 
be divided into two categories: static and dynamic.  

• Static changes refers to semi-permanent alterations of 
the environment since the map was created. These 
include decaying leaves, snow cover, structural 
changes to buildings and landmarks, construction of 
new facilities, and parked cars on the roadside. 

• Dynamic changes are the moving objects during an 
actual trip that are not included in the reference 3D 
map, including passing vehicles, pedestrians, and 
bicycles.  

Localization requires correctly registering a Lidar scan to the 
prior map despite both static and dynamic changes.  

B. Real-time requirement 

The real-time requirements are due to the need for low-
latency in vehicle control.  At typical urban speeds of 15~35 
mph, a latency more than 100ms will result in meter level 
uncertainty for the vehicle position which may cause safety 
issues. In addition, registration must keep up with the scanning 
Lidar, which typically operates at 10Hz.  

C. No Gross Errors 

Gross errors in localization during autonomous driving 
could cause fatal accidents. Thus it is important to assess the 
reliability and accuracy of ICP and NDT if they are to be used 
for localization. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Platform 

 The experimental platform used in this study is a modified, 
drive-by-wire Lincoln MKZ. The vehicle is equipped with a 
Velodyne PUCK (VLP-16) 16 line LiDAR, and a NovAtel 
PwrPak7 GNSS Inertial Navigation System to collect the near-
groundtruth data for analysis. A Core i7 CPU runs Ubuntu and 
Robot Operating System (ROS). 

B. Test Site 



 

 

 

Figure 1. Test sites. Left: MCity at Ann Arbor. Right: West Circle Drive at 
the campus of Michigan State University in East Lansing 

TABLE I.  THE PERFORMANCE FOR NDT AND ICP CORRESPONDING TO 

DIFFERENT REFERENCE MAP RESOLUTION 

 NDT ICP 

Reference 

Map 

Resolution 
(points/

2m  ) 

Localization 
MAE 

error(m) 

Average 

time for 

registration 
(ms) 

Localization  
MAE error 

(m) 

Average 

time for 

registration 
(ms) 

9 0.3391 5.814 0.1250 68.726 

36 0.0618 9.648 0.1167 203.549 

121 0.0473 10.404 - - 

400 0.0470 11.824 - - 

*For ICP, the computing time will be larger than 2 seconds for each 

registration step if the map resolution equals 121 points/ 2m or higher, 

therefore, the results are not listed in the TABLE. 

TABLE II.  DIFFERENT ICP PARAMETER SETTINGS AND THE 

CORRESPONDING PERFORMANCE 

 

 

 

Value of 

the 

parameters 

Localization  

MAE Error 

(m) 

Average time 

for 
registration 

(ms) 

Transformation 

difference 
threshold (m) 

0.005 0.1240 69.169 

0.01 0.1236 68.723 

0.02 0.1342 67.968 

Euclidean 
fitness 

threshold (m) 

0.05 0.1212 69.387 

0.1 0.1241 68.716 

0.2 0.4137 68.2459 

 

TABLE III.  DIFFERENT NDT PARAMETER SETTINGS AND THE 

CORRESPONDING PERFORMANCE 

 

 

 

Value of 

the 

parameters 

Localization  

MAE Error 

(m) 

Average time for 

registration (ms) 

Voxel size (m) 

0.5 0.0525 11.799 

1 0.0463 11.088 

2 0.0501 9.780 

Transformation 

difference 
threshold (m) 

0.005 0.0473 13.160 

0.01 0.0452 11.090 

0.02 0.0532 9.986 

Maximum step 
size (m) 

0.05 0.0472 12.937 

0.1 0.0467 11.082 

0.2 0.0581 9.874 

 

Figure 1 shows the two test sites used for this study. One is 
the University of Michigan’s MCity Test Facility in Ann Arbor, 
a purpose-built proving ground for testing autonomous vehicles 
in simulated urban and suburban driving environments. 
Another is West Circle Drive, a traffic hub in Michigan State 
University main campus. 

C. Parameters and runtime for ICP and NDT 

For both ICP and NDT a number of parameters can be 
tuned to adjust performance. In this paper, we tested the most 
influential parameters and evaluated the localization with mean 
absolute error (MAE), and computational time. The test route 
is a path in the MCity of length 350 meters and vehicle speed 
of 17mph.  

Parameters for ICP are: Reference map resolution,  
transformation difference threshold and Euclidean fitness 
threshold. Reference map resolution is defined as the number 
of points within a plane. The transformation difference 

threshold is the minimum distance below which iterative 
convergence will terminate. Euclidean fitness threshold 
represents the maximum allowed Euclidean error between two 

consecutive steps in the ICP loop before convergence, and 
Euclidean error is the sum of the Euclidean distances between 
correspondences divided by the number of correspondences [6]. 

Parameters for NDT are: Reference map resolution, voxel 
size, transformation difference threshold and maximum step 

size. The voxel size defines the voxel resolution of the internal  
NDT grid structure. The transformation difference threshold 
has the same meaning as in ICP. Finally, the maximum step 
size defines the maximum step length in the optimization 
process[7]. 

 TABLE Ⅰ shows the performance for NDT and ICP 

corresponding to different reference map resolution. The 

localization mean absolute error (MAE) for NDT is 

significantly smaller than ICP, except when the map resolution 

is 9 points/
2m . For NDT, although the localization accuracy 

between map resolution equals 36 points/
2m  and 121 points/

2m  respectively is close, the computing time for map 

resolution equals 36 points/
2m  is shorter, therefore, 36 points/

2m  map resolution is considered as the best for NDT. For ICP, 

the best map resolution is 9 points/
2m  because the computing 

time for other map resolution does not meet the real time 

requirement.  In all tables the rows highlighted in bold are 

either the best values or the values that we selected for our tests. 

 TABLE Ⅱ and TABLE Ⅲ shows the MAE localization 

error and the average computational time for each registration 

with different parameter settings of NDT and ICP. ICP is much 

more time consuming than NDT because the NDT matching 

time is ( )O N   where N is the number of input scan points [5]. 

The original ICP’s complexity is 
2( )O N , and using kd-tree to 

establish closest point relationships (this is the most popular 

ICP and also the one tested in this paper) reduces the 

complexity to ( log )O N N [8].  

1 1m m



 

 

 

Figure 2. Same location in different seasons with static changes. Upper: 
Aug 2017 (mapping data). Bottom left:  Dec 2017. Bottom right: March 

2018. 

TABLE IV.  COMPARISON OF NDT AND ICP IN PERFORMANCE UNDER  

STATIC ENVIRONMENTAL CHANGES 

Method 
 

 

Test Time 

NDT based 

localization MAE 
deviation from the pre-

planned path (m) 

ICP based 
localization MAE 

deviation from the 

pre-planned path 
(m) 

Dec 2017 0.0661 0.2341 

Mar 2018 0.0403 0.1636 

 
Note that these experiments were done at the MCity 

facility, which is a synthetic test site. Except for heavy snow 

or rain, the static environment at MCity facility was stable 

without much change. And during the tests, there were no 

other moving objects. This is the ideal condition for testing the 

performance of registration without any influence from other 

factors. Therefore, the performance results listed here can be 

treated as the benchmark for the two algorithms. 

D. Evaluation for environmental changes 

1) For static changes: The reference maps were developed 

professionally by CARMERA [9], a mapping company, for all 

sites included in our study. The mapping data used in this 

experiment was collected in West Circle Drive, Michigan 

State University main campus, during late July and early 

August 2017. To evaluate ICP and NDT under environmental 

changes, we conducted two series of autonomous path-

following experiments in December 2017 and March 2018; 

and then calculated the Euclidean distance between the 

localization results and the pre-planned path we set for the 

vehicle to follow. The vehicle control, path planning algorithm 

and the pre-planned path for the two experiments at different 

time are all the same. Note that the environments in the two 

experiments are both different from the one when the map was 

built. When compared to summer when the map was 

constructed, (i) the December test was conducted with snow 

covering the whole surrounding environment, (ii) both the 

December and March tests were conducted when there were 

no leaves on the trees, and (iii) in March there was fewer grass 

coverage on the ground. Figure 2 depicts the same position in 

the different season disscussed above with static changes. 

TABLE Ⅳ  shows the comparison of NDT and ICP 

performance under static environmental changes. The NDT 

based localization MAE deviation from the pre-planned path 

for the December 2017 test and March 2018 test is 0.0661m 

and 0.0403m respectively. While the ICP based localization 

error is an order of magnitude worse than the NDT based 

method. This result demonstrates that NDT is better able to 

handle environmental changes. 

2) For dynamic changes: We evaluated the algorithms’  

performance under dynamic changes by driving the vehicle 

around West Circle Drive when there were a significant 

number of vehicles and other dynamic objects. The size of the 

moving objects can influence the extent of the impact on the 

localization algorithm. Figure 3 shows an extreme example 

where a large bus blocks nearly half of the field of view. The  

average localization MAE error for NDT during this time was 

0.089m vs. 0.3m for ICP. 

E. The impact of the vehicle speed 

We tested different levels of speed from 5mph to 30mph at 
MCity with a 1km long route. We classified the speed into 
three levels, level 1 is 5~10 mph, level 2 is 15~20 mph, level 3 
is 25~30mph. For NDT, localization MAE errors are 0.0406m, 
0.0542m and 0.0514m for speeds 1, 2 and 3 respectively. For 
ICP, the pattern is similar with corresponding MAE errors of 
0.1074m. 0.1264m and 0.1311m. 

Vehicle speed impacts the accuracy of the initial guess of 
pose for each step of the registration.  This guess is based on 

 

Figure 3. Example of dynamic changes of the environment. The points inside 
the blue bounding box in the left figure correspond to the passing bus in the 

right figure. 

 

Figure 4. Comparison between NDT and ICP during the turning. 



 

 

the previously estimated pose.  If the vehicle drives faster, the 
difference the error in the initial guess will be larger, which 
makes the scan registration more challenging. NDT is able to 
converge from a larger range of initial values than ICP as 
explained in [4], and our observation is that for speeds up to 30 
mph, NDT achieves smaller localization error than ICP. 

F. Analysis for other situations that would cause higher 

localization error 

1) Turning segment: Initial guess for 3D scan registration is 
important. In autonomous driving localization, the initial guess 
is provided either by the pose from the previous registration 
step or the usage of vehicle motion/inertia data. In this paper, 
we only discuss the former one. Therefore, when the vehicle is 
making a turn, as compared to following a straight road, there 
would be not only a translation but also a rotation between the 
actual input scan and the reference map. Hence, under a turn, 
there would be a higher probability of registration error. Figure 
4 depicts the comparison of NDT and ICP localization over 
one of the turning segments at MCity. The comparison is 
shown in terms of Universal Transverse Mercator (UTM) 
coordinates when the average vehicle speed at this segment of 
the road was around 15mph. (Because the coordinate’s 
absolute UTM value is usually too large and inconvenient to 
show in the figure, shifts in both UTM Easting and Northing 
are applied to make the figure easier to read.) The NDT based 
localization MAE error during this turn is 0.0710m, which is 
very much within the designated path, while for ICP the 
localization MAE error during this turning segment is 0.1917m. 
Error during turning is generally higher when the turning 
radius is smaller and there are fewer localization features, 
however this is not always the case. 

 
2) Places where there are fewer vertical features: Vertical 
features (e.g., buildings, trees and fences, etc.) is especially 
important for 3D scan registration based localization. 
Registration algorithms may fail when the vehicle moves into 
an empty space with too few or no vertical features. In MCity, 
there is a large circular empty region with 40 meters in radius 
that has very few vertical features around. Figure 5 depicts the 
comparison of the ICP and NDT based localization with regard 
to the ground truth; the vehicle speed in this scenario is 17mph. 
The blue dots represent the ground truth position, the red and 
green dots stand for the position calculated from NDT and ICP, 

respectively. As shown in Figure 5, ICP completely failed in 
this test scenario while NDT was able to maintain an overall 
acceptable performance. Nevertheless, and despite the 
consistent superior performance of NDT under other tests, here, 
even NDT suffered from relatively much higher error when 
compared to other test scenarios in places with more salient 
vertical features. The largest NDT localization error in this 
region is 1.1166m, and its MAE error for this region is 
0.2544m; meanwhile, and as mentioned above, ICP completely 
failed. In this situation, NDT was still able to make use of the 
curbs and other vertical features far away in this situation; this 
is due to NDT’s use of voxels instead of individual points, 
which increases the relevance of vertical features in the 
registration process. By contrast, for ICP the number of points 
in vertical features are dwarfed by the number of ground points, 
resulting in a less accurate solution (if one is even found).  This 
experiment demonstrates that NDT is more robust and with 
lower probability to have gross errors than ICP under sparse 
vertical features.  

V. CONCLUSIONS 

We have evaluated the performance of ICP and NDT for 

autonomous vehicle localization by registering real-time scan 

to a prior 3D point-cloud map.  With sufficient number of 

vertical features, both methods perform robustly, although 

NDT runs much faster than ICP, and had rather significantly 

smaller localization error. Compared to focusing on individual 

points in ICP, the probabilistic voxelization representation 

makes NDT be able to obtain the big picture of the 

environment instead of details. Therefore, the NDT based 

method possesses better ability to handle realistic variations 

occurring over the course of nine months including both static 

and dynamic environmental changes. 
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Figure 5. Comparison between NDT and ICP based localization in an 
empty space 



 

 

 


