
Copyright © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works.

Abstract— Accurate vehicle localization is arguably the most

critical and fundamental task for autonomous vehicle

navigation. While dense 3D point-cloud-based maps enable

precise localization, they impose significant storage and

transmission burdens when used in city-scale environments. In

this paper, we propose a highly compressed representation for

LiDAR maps, along with an efficient and robust real-time

alignment algorithm for on-vehicle LiDAR scans. The proposed

mapping framework, which we refer to as Feature Likelihood

Acquisition Map Emulation (FLAME), requires less than 0.1%

of the storage space of the original 3D point cloud map. In

essence, FLAME emulates an original map through feature

likelihood functions. In particular, FLAME models planar, pole

and curb features. These three feature classes are long-term

stable, distinct and common among vehicular roadways.

Multiclass feature points are extracted from LiDAR scans

through feature detection. A new multiclass-based point-to-

distribution alignment method is proposed to find the

association and alignment between the multiclass feature points

and the FLAME map. The experimental results show that the

proposed framework can achieve the same level of accuracy (less

than 10cm) as the 3D point cloud based localization.

I. INTRODUCTION

A fundamental task for autonomous vehicles is to

accurately determine its position at all times. Multiple key

sub-systems rely either fully or partially on the performance

of the localization algorithm. It has been estimated that

decimeter level localization accuracy is required for

autonomous vehicles to drive safely and smoothly [1].

GNSS-based (Global Navigation Satellite System) techniques

struggle to achieve this level of accuracy except for open sky

areas [2], [3]. Map-based localization frameworks, especially

those that utilize Light Detection and Ranging (LiDAR) based

localization methods [4], [5], are popular because they can

achieve centimeter level accuracy regardless of light

conditions. However, a key drawback of any localization

method that relies on 3D point cloud maps is the enormous

size of the map itself. Consequently, there is a need for

efficient representations of such maps while maintaining

high-accuracy localization capabilities. The representation

format should contain sufficient information for vehicles to

localize and be lightweight enough to be stored and

downloaded into vehicles in real-time when needed.

Furthermore, it is important to note that environments do

change rather frequently, and it is therefore important to have

the ability to update the map to reflect these changes.

In this paper, we propose a lightweight, map-based

localization framework, Feature Likelihood Acquisition Map

Emulation (FLAME). Fig. 1 shows an overview of our system

architecture. From the map point of view, instead of the point

cloud, compressed and lightweight features are used to

represent the environment. As made clear later, FLAME

emulates an original map through feature likelihood

functions. The size of the final FLAME map is under 0.1% of

the original point cloud. To align the real-time LiDAR scan

to the feature map for localization, corresponding features are

extracted in real-time from the scan through feature detection.

Experimental results show that our proposed method can

achieve comparable centimeter level localization accuracy to

the traditional dense 3D point cloud based methods. The main

contributions are:

⚫ A novel FLAME map representing a 3D urban point

cloud in a highly compressed form.

⚫ A real-time, feature-detection method for on-vehicle

FLAME: Feature-Likelihood Based Mapping and Localization for

Autonomous Vehicles

Su Pang, Daniel Kent, Daniel Morris and Hayder Radha

Figure 1: Overview of our proposed FLAME map-based localization

architecture.

 Su Pang, Daniel Kent, Daniel Morris and Hayder Radha are with the
Department of Electrical and Computer Engineering, College of

Engineering, Michigan State University, 220 Trowbridge Road, East
Lansing, Michigan, 48824, United States. Email: (pangsu@msu.edu,

kentdan3@egr.msu.edu, dmorris@msu.edu, radha@egr.msu.edu)

mailto:pangsu@msu.edu
mailto:kentdan3@egr.msu.edu
mailto:dmorris@msu.edu
mailto:radha@egr.msu.edu

[Type here]

LiDAR scans.

⚫ A multiclass feature association and alignment

algorithm that achieves accurate alignment (error less

than 10cm) between the detected LiDAR scan

features and the FLAME map.
The paper is organized as follows: Section Ⅱ introduces

related works. Section Ⅲ illustrates the FLAME system
architecture. Section Ⅳ and section Ⅴ explain the processing
of map and feature detection respectively. Section Ⅵ
describes the alignment between detected features and feature
map. Section Ⅶ shows the experimental results and finally in
section Ⅷ, we conclude the paper.

II. RELATED WORK

 An overview of the related work on localization in 3D point

clouds was discussed in [6] and [7]. In this section, we only

review feature map-based methods.

 Many efforts have explored different methods to compress

city-scale maps while ensuring accurate localization. During

the DARPA urban challenge, all teams were provided with a

digital street map of the environment in the form of a Road

Network Definition File (RNDF) and a high-resolution aerial

image of the test site which can be used to enhance the RNDF

for localization and planning [8]–[11]. The RNDF file is the

prototype of the HD vector map that professional mapping

companies offer for autonomous driving nowadays. Most of

the teams used a fused localization system based on GPS,

odometry, inertial measurement unit (IMU) and LiDARs [8]–

[11]. These methods can determine the global pose in lane

level accuracy. Philipp Ruchti et al.[12] proposed a method

to localize a mobile robot based on OpenStreetMap [13] and

3D LiDAR. They developed a road classification scheme for

3D LiDAR data and a novel sensor model, which relates the

classification results to a road network. However, their

localization accuracy is only meter-level. Domonique Gruyer

et al.[14] provide an ego-lane level of accuracy localization

system using an accurate digital lane marking map and

cameras. Using only the lane markings in the digital map

limits the application scenarios for the system since lanes can

be blocked by other vehicles and not well painted in some

roadways. Pole features are long-term stable and very

common in the environment. A decimeter-level accuracy

pole-based localization for autonomous vehicles using stereo

camera system is proposed in [15]. E. Javanmardi et al.[16]

proposed a multilayer 2D vector map based localization

framework using 3D LiDAR. The only class of features

contained in their 2D vector map is building footprints; and

hence, alignment would fail for urban regions where mapped

building facades are not within range of the scanning LiDAR.

 Recently, neural networks have been leveraged to enable

learning-based localization and mapping [17]–[20]. These

include a learnable data-driven 3D segment descriptor to

encode the point cloud, [17] and [18], which localize using

segment feature matching and geometric verification, and the

extracted features reconstruct the environment. A. Zaganidis

et al. [19] used PointNet, a deep neural network for extracting

semantic information from point cloud and incorporate it in

point cloud registration. These methods learn features from

the training data instead of handcrafting them; they have

future potential but suffer from computation, robustness and

accuracy issues.

III. SYSTEM ARCHITECTURE

Fig. 1 shows the overview of the system architecture and
dataflows. The green arrows in Fig. 1 describe the proposed
pipeline. From the map end, three classes of features, planar,
pole and curb, are extracted from the original point cloud map
and make up the feature vector map. Then the proposed
FLAME map is generated based on the uncertainty of the
feature vector map. From the LiDAR sensor end,
corresponding classes of features are extracted from the real-
time LiDAR scan through the feature detection algorithm.
Then the proposed multiclass based association alignment
algorithm is used to align the multiclass feature points and the
FLAME map for localization.

IV. FLAME MAP

A. Classes of Features

We propose a three-class feature set to represent
environments around vehicular roadways. The feature set is
chosen so that features are common and broadly representative,
as well as being discriminative and readily localized. As
mentioned before, we consider three feature classes: Planar
features, which include walls, building facades, fences, signs
with large boards, and other planar surfaces. Pole features that
include the pole part of streetlights, traffic signs, tree trunks
and similar vertical shapes. Finally, curb features discretely
sample curbs. Each of these feature types is easily detected by
LiDAR, even for low resolution LiDAR, and can be modeled
by simple geometric entities, as described in the next
subsection.

B. Generating 2D Feature Vector Map

Our feature map is automatically created from an HD 3D

point cloud map. The 3D point cloud map data used in this

study was collected by a mobile mapping system from a third

party equipped with a 32 lines LiDAR, a precise GNSS, IMU

and several cameras with an algorithm similar to

GraphSLAM [21]. The resolution of the raw point cloud map

data is usually more than 400 points/𝑚2.

The first step is to remove ground pixels and organize

above-ground pixels into cells. The points above the ground

plane are extracted from the point cloud using Cloth

Simulation Filter [22]. This is followed by rasterizing the off-

ground points into small cells on the X-Y plane with

resolution of r by r. The cell 𝑐𝑖 can be represented using a

vector: 𝑐𝑖 = {𝑷𝑐𝑖
, 𝑁𝑐𝑖

} , where 𝑷𝑐𝑖
 represents the point set

located within this cell, and 𝑁𝑐𝑖
 is the number of points in 𝑷𝑐𝑖

.

From our experience, a resolution should be at most 0.2m by

0.2m to obtain centimeter level accuracy in localization.

Next, our three feature classes are extracted from the

rasterized point cloud. All the landmark features are tall

vertical features above the ground plane, which leads to the

fact that the cells containing landmark features would

comprise more points when compared to other cells. Hence,

we filter out the cells 𝑐𝑖 such that 𝑁𝑐𝑖
< 𝑁𝑡 , where 𝑁𝑡 is a

threshold that is a function the original point cloud density

and the resolution of rasterizations. A 2D feature point map

[Type here]

can be formed using the x and y coordinates of the remaining

cells’ center point. Planar features and curb features can be

described as a set of connected line segments in 2D. From this

feature point map, connected line segments representing

planar features can be extracted using Random Sample

Consensus (RANSAC) or Hough transform. Using the same

method for the segmented ground points, one can extract the

curb features. As for pole features, since the radius of most

pole features in the urban and suburban environments are less

than 20cm, which can be approximately modeled as a point in

2D. Applying 2D point clustering and calculating the center

of the cluster could extract the point-based pole features from

the point feature map.

 The extracted three feature classes constitute the 2D feature

vector map.

C. Generating FLAME Map

For traditional point-cloud registration-based localization,

the real-time LiDAR scan is matched to a point cloud map

through a point-to-point matching process. However, to

perform feature matching effectively, the feature vector map

built in the previous section needs to be converted into feature

likelihood map (FLAME map) represented with normal

distributions as described in this section. Compared to a

feature vector map, a FLAME map can better emulate the

original point cloud map. Under FLAME, normal distribution

likelihood field functions can be treated as the generative

process for the actual points from the landmark features in the

original point cloud map.

The parameters for each normal distribution likelihood

field are calculated as follows. For planar features modeled as

connected line segments in the feature vector map, we divide

the connected line segments into smaller line segments of

length d. A normal distribution is used to model each line

segment 𝑙𝑖 as a likelihood field with a mean value 𝝁𝑖 and a

covariance matrix 𝑐𝑜𝑣𝑖 . The mean value 𝝁𝑖 is the center point

of this line segment. The calculation of 𝑐𝑜𝑣𝑖 is as follows.

First, as shown in Fig. 2, assuming there is a 99% confidence

ellipse for 𝑁(𝝁𝑖 , 𝑐𝑜𝑣𝑖) along this line segment, i.e. 𝝁𝑖 is the

center of the confidence ellipse, the line segment direction is

the major axis direction. The underlying meaning of this

confidence ellipse is that 99% of the points generated by the

normal distribution 𝑁(𝝁𝑖 , 𝑐𝑜𝑣𝑖) would locate within this

ellipse. The length of the major axis 𝑙𝑎𝑖 and minor axis 𝑙𝑏𝑖 of

the confidence ellipse would be as follows:

𝑙𝑎𝑖 = 2√𝑠 ∙ 𝜆1 = 2 (

𝑑

2
+ 𝜀𝑙𝑖𝑛𝑒) (1)

𝑙𝑏𝑖 = 2√𝑠 ∙ 𝜆2 = 2 (

𝑑
2

+ 𝜀𝑙𝑖𝑛𝑒

10
) (2)

where 𝑠 is the 99% Chi-Square likelihood with 2 degrees of

freedom, 𝜆1 and 𝜆2 are the larger and smaller eigen value of

the covariance matrix 𝑐𝑜𝑣𝑖 respectively. 𝜀𝑙𝑖𝑛𝑒 is the

uncertainty factor. Therefore, 𝜆1 and 𝜆2 can be calculated

from equations (1) and (2). The positive direction of the major

and minor axis of the confidence ellipse would be the same as

the direction of the eigenvector corresponding to 𝜆1 and 𝜆2

respectively. Therefore, we can build the unit eigenvectors 𝒗1

and 𝒗2 according to the line segment direction. As shown in

Fig. 2, 𝒗1 would point to the same direction as this line

segment, 𝒗2 would be vertical to 𝒗1. So, for a line segment 𝑙𝑖,

the corresponding likelihood filed modeled by normal

distribution 𝑁(𝝁𝑖 , 𝑐𝑜𝑣𝑖) can be calculated as follows:

𝝁𝑖 =

(𝒑𝑙𝑖1 + 𝒑𝑙𝑖2)

2
 (3)

 𝑐𝑜𝑣𝑙𝑖
= 𝑽 ∙ 𝑫 ∙ 𝑽−1 (4)

𝑽 = [𝒗1 𝒗2], 𝑫 = [

𝜆1 0
0 𝜆2

] (5)

where 𝑝𝑙𝑖1 and 𝑝𝑙𝑖2 are the end points of line segment 𝑙𝑖. 𝑽 is

the orthonormal eigenvector matrix.

For curb features, we use the same processing method

because curb features are also represented as connected line

segments in the feature vector map. The only difference is that

we use a larger uncertainty factor 𝜀𝑐𝑢𝑟𝑏. This is the case since

when compared to walls, fences and building facades, curbs

are much lower to the ground and usually not strictly vertical

to the ground, and this would result in a larger uncertainty.

Poles are represented as points in the feature vector map,

and their feature likelihoods are modeled by normal

distribution 𝑁(𝝁𝑝𝑜𝑙𝑒𝑗
, 𝑐𝑜𝑣𝑝𝑜𝑙𝑒𝑗

), 𝝁𝑝𝑜𝑙𝑒𝑗
 is the coordinate of

𝑝𝑜𝑙𝑒𝑗, 𝑐𝑜𝑣𝑝𝑜𝑙𝑒𝑗
 can be calculated as follows:

𝑐𝑜𝑣𝑝𝑜𝑙𝑒𝑗

=
𝑟2

𝑠
∙ 𝑰 (6)

where r represents the radius of the confidence circle, 𝑠 is the

99% Chi-Square likelihood with 2 degrees of freedom, I is

2x2 identity matrix. If the radius of the pole is provided, r in

this equation can be changed into 𝑟𝑝𝑜𝑙𝑒𝑗
+ 𝜀𝑝𝑜𝑙𝑒, where 𝑟𝑝𝑜𝑙𝑒𝑗

is the radius of the pole and 𝜀𝑝𝑜𝑙𝑒 is the uncertainty factor.

Figure 2: The calculation of mean value 𝜇𝑖 and covariance 𝑐𝑜𝑣𝑖 for the

likelihood field of line segment 𝑙𝑖. The green line represents line segment 𝑙𝑖,

the blue line and yellow line stand for the line segment 𝑙𝑖−1 and line segment

𝑙𝑖+1 respectively. The red ellipse is the 99% confidence ellipse generated

from 𝑁(𝝁𝑖, 𝑐𝑜𝑣𝑖).

[Type here]

V. FEATURE DETECTION

 Up to this point, a dense 3D point cloud of the environment

has been transformed into a FLAME map. Our goal is ego

localization using real-time LiDAR scans. However, rather

than directly matching 3D LiDAR points to the feature map,

we propose first transforming these scans into feature maps

themselves and then aligning them for ego localization. As

we describe in this section, this has the advantages of

improved association with fewer ambiguities as well as

reduced computation, while simultaneously maintaining high

accuracy.

 Finding features in a LiDAR scan differs from feature

detection in a dense, pre-scanned point cloud due primarily to

the decrease in resolution with range from sensor. We select

feature detectors that can operate at a broad range of

resolutions, including low sampling resolution, and describe

them in this section. The pole and planar features detectors

are taken from [23] and summarized below, while we develop

our own curb feature detector.

A. Scan Preprocessing

 LiDAR points are initially filtered to obtain surface

normals and are categorized as ground, steep and other.

Surface normals are estimated from neighboring pixels in a

depth image as described in [23]. These normals provide a

steepness measure for pixels; those close to vertical (within

12.5 degrees) are labeled steep pixels, and are used to gather

evidence for our pole and planar features. Any appropriate

ground detection method could be used [24]–[27] to label

ground pixels.

B. Pole Feature Detection

We search for pole features by first dividing the LiDAR

scan into a regular array of cells of size 1m. Within each cell

we gather evidence for a pole and its location. Poles are

modeled as vertical cylinders with LiDAR pixels distributed

on the surface of the pole and with normal vectors that point

away from the pole center and within 90 degrees of the sensor.

Pole parameters, 𝜃𝑝𝑜𝑙𝑒 = (𝑥𝑗 , 𝑦𝑗 , 𝑟𝑗) , are its center location

and radius. Assuming a cell contains a pole, a LiDAR pixel

with location 𝒙𝑖 in a cell and normal 𝒏𝑖 can predict a pole

center as illustrated in Fig 3. This prediction,

𝑃(𝒙𝑖 , 𝒏𝑖|𝑇𝑝𝑜𝑙𝑒 , 𝜃𝑝𝑜𝑙𝑒), can be modeled as Gaussian centered

at the pole center, and sampled over grid centers.

If the cell is not a pole cell, then model 𝑃(𝒙𝑖 , 𝒏𝑖|𝑇𝑛𝑜𝑛𝑝𝑜𝑙𝑒)

as a uniform density over grid centers equal to
1

𝑛𝑔
, where 𝑛𝑔

is the number of grid elements in each cell.

Assuming independent pixel samples, we can solve for the

maximum likelihood ratio of pole to non-pole,

𝑀𝐿𝑅𝑝𝑜𝑙𝑒(𝜃𝑝𝑜𝑙𝑒), using a probabilistic Hough transform [28].

This maximizes the following expression over pole locations

and radii:

𝑀𝐿𝑅𝑝𝑜𝑙𝑒(𝜃𝑝𝑜𝑙𝑒) = argmax
𝜃𝑝𝑜𝑙𝑒

𝑛𝑔
𝑁 ∏ 𝑃(𝑥𝑖 , 𝑛𝑖|𝑇𝑝𝑜𝑙𝑒 , 𝜃𝑝𝑜𝑙𝑒)

𝑁𝑠
𝑖=1 (7)

Here 𝑁𝑠 is the number of steep pixels, and 𝑁 the number of

non-ground pixels. The result is a pole estimate for each cell

along with a likelihood ratio for a pole existing there. A

threshold on this likelihood ratio is determined

discriminatively. Further details of the method are in [23].

C. Planar Feature Detection

 Planar features, like pole features, are detected using an

array of cells distributed over the LiDAR scan. In each cell,

a planar feature is modeled as a set of steep pixels with

normals having the same orientation in the horizontal plane,

𝜃𝑤𝑎𝑙𝑙 . Non-planar features are modeled as having uniform

normal orientation. Once again a probabilistic Hough

transform solves for the maximum likelihood ratio of wall to

non-wall analogous to (7), along with a wall orientation 𝜃𝑤𝑎𝑙𝑙 ,

with further details in [23].

D. Curb Detection

Curbs are another class of common and important features

that are readily observable by moving vehicles. Based on the

geometry and topology of the curb features around the vehicle,

they can provide reliable constraints in the lateral direction.

There are many curb detection algorithms available[29]–[31],

but these methods are computationally expensive, and work

best with a combination of high resolution 3D LiDAR and

other sensors. This paper proposes a lightweight curb

detection method, which can be used for any resolution

LiDAR.

We have experimented the proposed method with a low-

resolution LiDAR that returns a point cloud formed by 16

concentric measurements, which we refer to as rings. Further,

the LiDAR is mounted on the top of the vehicle and parallel

to the ground. If the height is fixed, for empty flat ground, the

distance between each consecutive ring can be determined.

Points where consecutive rings are closer than this are

candidates for being curbs.

We compute the distance between rings for flat ground as

illustrated in Fig. 4. The 𝑖𝑡ℎring radius is:

𝑟𝑖

𝑟𝑒𝑔𝑢𝑙𝑎𝑟
=

ℎ

tan𝜃𝑖

(8)

where h is the LiDAR height relative to the flat ground and 𝜃𝑖

is the laser beam angle. The distance between ring i and i+1

is:

Figure 3: An illustration of evidence gathering for pole detection, in this

case radius 𝑟𝑗. A cell is divided into a uniform grid at 10cm spacing. Each

steep LiDAR point (black dot) predicts a pole center offset 𝑟𝑗 along its

normal. Predictions are interpolated into the grid, and a Hough Transform

finds the maximum likelihood pole center, with a search over multiple
radii.

[Type here]

 ∆𝑟𝑖,𝑖+1
𝑟𝑒𝑔𝑢𝑙𝑎𝑟

= 𝑟𝑖+1 − 𝑟𝑖 , 0 < 𝑖 < n − 1 (9)

Additional factors influence the distance between consecutive

rings including non-flat ground and the LiDAR is not being

mounted exactly parallel to the ground. To accommodate

these we define an interval:

 𝑑𝑖,𝑖+1 = [𝑎∆𝑟𝑖,𝑖+1
𝑟𝑒𝑔𝑢𝑙𝑎𝑟

, 𝑏∆𝑟𝑖,𝑖+1
𝑟𝑒𝑔𝑢𝑙𝑎𝑟

],

0.5 < 𝑎 < 𝑏 < 1
(10)

where a and b are parameters that adjust the range bounds.

Points with ∆𝑟𝑖,𝑖+1 falling within 𝑑𝑖,𝑖+1 are categorized as

curb candidates.

To avoid misclassifying sloped regions as curbs we

develop the following strategy. We observe that gradients

provide useful cue: curbs typically have a large height

variance in lateral direction (y direction) and low height

variance in longitudinal direction (x direction). To quantify

this, the LiDAR scan is placed in an n by m cell grid, where n

is the number of rings and each row i stores a ring. Each cell

grid 𝑐𝑖,𝑗 stores the mean value (𝑥𝑖,𝑗, 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗) of the position of

points that fall in 𝑐𝑖,𝑗. Therefore, the gradient is calculated as

follows:

 𝑔𝑖,𝑗 =
𝑧𝑖,𝑗+1 − 𝑧𝑖,𝑗−1

dist𝑥𝑦(𝑐𝑖,𝑗+1, 𝑐𝑖,𝑗−1)
 (11)

where 𝑧𝑖,𝑗 is the z value of the element in 𝑖𝑡ℎ row and 𝑗𝑡ℎ

column in the cell grid. dist𝑥𝑦(𝑎, 𝑏) represents the Euclidean

distance between a and b in x-y plane. For each grid 𝑐𝑖,𝑗, we

compute 𝑔𝑖,𝑗 and compare it with a threshold 𝑡𝑔 to classify it

as a curb candidate or not. Finally, based on the ground

segmentation depicted in the previous subsection, only points

classified both as ground and curb are classified as curb points.

VI. ASSOCIATION AND ALIGNMENT

The two key components of ego localization are feature

association and feature alignment. This section proposes a

localization method that leverages the three separate feature

types: pole, planar and curb. Similar to NDT, which optimizes

a score function related to the position density for each feature

rather than requiring explicit association [32], we build the

score for each detected feature of the current scan by summing

densities from nearby map features of the same class and

optimize this. Our full method is summarized in Algorithm 1.

The state of the system is defined as 𝑿𝑡 = (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡)𝑇 , a

three-parameter pose in 2D. 𝒛𝑡
𝑝𝑜𝑙𝑒

, 𝒛𝑡
𝑝𝑙𝑎𝑛𝑎𝑟

 and 𝒛𝑡
𝑐𝑢𝑟𝑏 stand

for the detected pole, planar and curb points from the LiDAR

scan at time t. 𝐹𝐿𝐴𝑀𝐸_map contains N4 likelihood fields, 𝒎𝑖,

which each encompassing the class name, mean value 𝝁𝑖 and

the covariance matrix 𝑐𝑜𝑣𝑖 . 𝑣𝑡
𝑚 and 𝜃𝑡

𝑚 are the measured

vehicle linear speed and heading angle at time stamp t from

odometry and IMU used for motion prediction.

Line 2 shows the motion prediction using the previous state,

linear vehicle speed 𝑣𝑡
𝑚 and heading angle 𝜃𝑡

𝑚 . T is the

sampling period. The motion model is only used for providing

the initial guess to initialize the iterative alignment. The

whole iterative alignment process is depicted in lines 3~22.

 Taking pole class feature as example (c==’pole’ in
Algorithm 1), in line 8, for a transformed pole feature point

𝑇(𝑿̂𝑡 , 𝒑𝑖
𝑝𝑜𝑙𝑒

), the correspondence is determined by finding the

top 3 closest pole feature likelihood fields in the map. 𝑇(𝑿, 𝒑)

is defined as a function that transforms a point p by pose X.

𝑿̂𝑡 contains motion prediction error, and hence, associating

𝑇(𝑿̂𝑡 , 𝒑𝑖
𝑝𝑜𝑙𝑒

) to the closest map pole feature likelihood field

may not be correct. However, among the top three closest map

pole feature likelihood fields, the probability of containing the

correct correspondence would be much higher. Therefore, the

strategy is to find all the potential correspondences and

Figure 4: Scenario that 3D LiDAR beams intercept a flat plane.

Algorithm 1: Multiclass Based Association and Alignment
1 Variables:

𝒛𝑡
𝑝𝑜𝑙𝑒

= ൛𝒑1
𝑝𝑜𝑙𝑒

, 𝒑2
𝑝𝑜𝑙𝑒

, … , 𝒑N1
𝑝𝑜𝑙𝑒

ൟ,

𝒛𝑡
𝑝𝑙𝑎𝑛𝑎𝑟

= ൛𝒑1
𝑝𝑙𝑎𝑛𝑎𝑟

, 𝒑2
𝑝𝑙𝑎𝑛𝑎𝑟

, … , 𝒑N2
𝑝𝑙𝑎𝑛𝑎𝑟

ൟ,

𝒛𝑡
𝑐𝑢𝑟𝑏 = {𝒑1

𝑐𝑢𝑟𝑏 , 𝒑2
𝑐𝑢𝑟𝑏 , … , 𝒑N3

𝑐𝑢𝑟𝑏},

𝒑𝑖
𝑐𝑙𝑎𝑠𝑠 = (𝑥𝑖

𝑐𝑙𝑎𝑠𝑠, 𝑦𝑖
𝑐𝑙𝑎𝑠𝑠),

𝑐𝑙𝑎𝑠𝑠 = {'pole', 'planar', 'curb'},
FLAME _map = {𝒎1, 𝒎2, 𝒎3,…, 𝒎N4},
𝒎𝑖 = {𝑐𝑙𝑎𝑠𝑠, 𝝁𝑖 , 𝑐𝑜𝑣𝑖},
𝑿𝑡−1 = (𝑥𝑡−1, 𝑦𝑡−1, 𝜃𝑡−1)𝑇

2

𝑿̂𝑡 = ቎

𝑥ො𝑡

𝑦ො𝑡

𝜃෠𝑡

቏ = ቎

𝑥𝑡−1 + 𝑣𝑡
𝑚 ∙ 𝑇 ∙ 𝑐𝑜𝑠𝜃𝑡

𝑚

𝑦𝑡−1 + 𝑣𝑡
𝑚 ∙ 𝑇 ∙ 𝑠𝑖𝑛𝜃𝑡

𝑚

𝜃𝑡
𝑚

቏ %Motion Prediction

3 while not converged do

4 for each c in class:

5 𝒔𝒄𝒐𝒓𝒆𝑐 ← 𝟎

6 𝒈𝒄 ← 𝟎

7 𝑯𝒄 ← 𝟎

8 for all transformed detected c feature points 𝑇(𝑿̂𝑡, 𝑝𝑖
𝑐)

9 do kd search with radius ≤ r to find the top 3 closest

features in 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑_map with 𝑐𝑙𝑎𝑠𝑠 == 𝑐

10 Update the negative score s (see equation (12))

11 𝑠𝑐𝑜𝑟𝑒𝑐 ← 𝑠𝑐𝑜𝑟𝑒𝑐 + 𝑠𝑖
𝑐(𝑿̂𝑡)

12 Update the gradient vector 𝒈𝒄

13 Update the Hessian Matrix 𝑯𝒄

14 end for

15 end for

16 𝑠𝑐𝑜𝑟𝑒𝑎𝑙𝑙 = 𝑠𝑐𝑜𝑟𝑒𝑝𝑜𝑙𝑒 + 𝑠𝑐𝑜𝑟𝑒𝑝𝑙𝑎𝑛𝑎𝑟 + 𝑠𝑐𝑜𝑟𝑒𝑐𝑢𝑟𝑏

17 𝒈𝑎𝑙𝑙 = 𝒈𝑝𝑜𝑙𝑒 + 𝒈𝑝𝑙𝑎𝑛𝑎𝑟 + 𝒈𝑐𝑢𝑟𝑏

18 𝑯𝑎𝑙𝑙 = 𝑯𝑝𝑜𝑙𝑒 + 𝑯𝑝𝑙𝑎𝑛𝑎𝑟 + 𝑯𝑐𝑢𝑟𝑏

19 solve 𝑯𝑎𝑙𝑙 ∙ ∆𝑿̂𝑡 = −𝒈𝑎𝑙𝑙

20 𝑿̂𝑡 ← 𝑿̂𝑡 + ∆𝑿̂𝑡

21 end while

22 return 𝑿𝑡 ← 𝑿̂𝑡

[Type here]

combine them into the score. If fewer than three pole feature

likelihood fields are found, only those found are used. If there

is no pole feature likelihood field found in the neighborhood,

then the algorithm drops this detected pole point in this

iteration as it may be a false positive. This strategy also makes

the system robust to dynamic moving objects that are not

modeled in the map. For example, passing vehicles that may

be detected as planar features should not be associated to any

feature likelihood field in the FLAME map.

Then, the score for a feature of class c is calculated and

updated in lines 10~11 by summing the scores of up to 3

nearby map features of the same class:

𝑠𝑖
𝑐(𝑿̂𝑡) = ∑ 𝑒𝑥𝑝 (−

1

2
(𝑇(𝑿̂𝑡, 𝒑𝑖

𝑐) − 𝝁𝑗)
𝑇

∙ 𝑐𝑜𝑣𝑗
−1 ∙3

𝑗=1

(𝑇(𝑿̂𝑡, 𝒑𝑖
𝑐) − 𝝁𝑗)).

(12)

The total score over all features is found as described in lines

12~13, as well as the gradient vector and Hessian Matrix of

the pose vector 𝑿̂𝑡.

In the proposed framework, the search for correspondence

is constrained to the same class of features; for example, the

detected curb feature points can only be associated with the

curb feature likelihood fields in the map. This multiclass-

based association significantly reduces false alignments. The

negative score, gradient vector and Hessian matrix are

calculated based on their classes separately, but are all

parameterized with the vehicle pose 𝑿̂𝑡. Newton’s method is

used to maximize the total score function (lines 17~20).

 To reduce the complexity of the system, the proposed

architecture only focuses on three-parameter pose estimation

in two dimensions. This is sufficient for most driving

environments where the vehicle remains on the ground

surface.

VII. EXPERIMENTS AND ANALYSIS

A. Experimental Platform and Test Sites

The experimental platform used in this study is a modified,

drive-by-wire Lincoln MKZ. The vehicle is equipped with a

16 lines LiDAR (VLP-16), and a NovAtel PwrPak7 GNSS

Inertial Navigation System to collect the near-ground truth

data with an error of 2~3cm for analysis. A Core i7 CPU runs

Ubuntu and Robot Operating System (ROS).

 Two test sites in typical suburban environment included in

this study. Test site #1 is a 62000 𝑚2 purpose-built proving

ground, University of Michigan’s MCity Test Facility. Test

site #2, as shown in Fig. 5, is West Circle Drive, a traffic hub

in Michigan State University. Note that both the two test sites

are roughly flat with no steep slopes.

B. Evaluation and Comparison

 To evaluate the performance of the proposed localization

framework, we drove the vehicle for several loops with

different speeds in the test sites and evaluated the position

estimation by comparing the proposed method with

traditional 3D point cloud registration based localization

(NDT driven using the Point Cloud Library) and other related

methods. Noted that the dynamic objects are not removed in

the process of building 3D point cloud map and the real time

LiDAR scans in our experiments. TABLE Ⅰ shows the

comparison of position estimation mean absolute error (MAE)

and orientation MAE error between the proposed method and

other methods. We performed two types of experiments. One

is an overall localization experiment; the second is a single-

step alignment experiment. For overall localization, as shown

in Algorithm 1 in Section 6, it is a recursive algorithm, the

current state 𝑿𝑡 is updated from the previous state 𝑿𝑡−1. In

the single-step alignment experiment, the current state 𝑿𝑡 is

updated from the previous ground truth state. For some of the

methods we used for comparison, they have relatively large

errors in each step of the alignment; and consequently, the

accumulative error for each step would make the recursive

algorithm fail and impossible to evaluate quantitatively.

Using the previous ground truth to initialize the update would

keep the algorithm running and make it feasible to evaluate

and compare the error in each single step of the alignment for

the whole route. The error for position estimation is defined

as the Euclidean distance between the position estimation and

the near-ground truth. The orientation error is defined as the

absolute difference between the estimated yaw angle and the

near-ground truth yaw angle. TABLE Ⅰ shows that the

proposed method can achieve centimeter-level localization

accuracy and same level of performance as the traditional 3D

point cloud registration based method. Performance was good

even for road segments when only two of the three feature

classes were observed.

 TABLE Ⅱ shows the comparison of the size for the two

types of maps. The proposed FLAME map uses far less

memory and computation than a traditional point cloud map.

According to [33], 3D point cloud map with resolution of 121

points/𝑚2 could achieve the best localization performance

using VLP-16. This result illustrates that for localization

applications, many of the rich details in 3D point cloud maps

contribute little to improving localization accuracy, and can

be efficiently encoded as class labels for feature likelihoods.

 The use of multi-class features that are associated and

aligned within class is advantageous when features are in

close proximity. This is particularly the case when maps are

projected into a 2D plane. Ignoring class can lead to incorrect

associations. Fig. 6 compares the proposed multi-class based

association alignment with non-class based alignment. This

illustrates how non-class based alignment results in curb

Figure 5: Test site #2, West Circle Drive at the campus of Michigan State

University. The length of the route is about 1.45 km. The red line highlights

the driven route.

[Type here]

features being miss-associated with planar-features on walls.

On the other hand, multi-class features avoid this issue

leading to improved alignment.

 For map-based localization algorithms, environmental

changes, which are not modeled in the prior map, can affect

localization performance. Fig. 7 illustrates one scenario with

some detected dynamic and static objects that are not included

in the map. The measured LiDAR points from the side of the

bus are detected as planar features. The huge bus also blocks

the field of view behind it, so the features behind it cannot be

detected. Despite this, the proposed multiclass based

association alignment framework works well as no features

are associated with the bus features.

VIII. CONCLUSION

 We introduced a new mapping and localization framework

that is based on distinct feature classes and corresponding

feature likelihood functions. The proposed FLAME map

multiclass features enable robust localization, which could be

achieved despite the fact that the required space needed for

representing FLAME maps are orders of magnitude smaller

than traditional 3D point cloud maps. Furthermore, a new

feature-to-feature alignment algorithm is proposed to align

the detected features from the LiDAR scans to the FLAME

map. Using intra-class association improves alignment

robustness when features are dense. Experimental results

show that the proposed method can achieve centimeter level

localization accuracy and is robust to static and dynamic

changes in real environments that are not modeled in the map.

 In future work, we plan to extend the FLAME approach to

different sensor modalities and additional feature detection

algorithms. Furthermore, we will evaluate our methods on

some public available datasets collected with different sensors,

such as KITTI [34] and nuScene [35] dataset. Moreover, it

could of interest to incorporate graph-based optimization as

the backend and build a complete online SLAM framework

based on FLAME.

REFERENCES

[1] J. Levinson, M. Montemerlo, and S. Thrun, “Map-Based Precision

Vehicle Localization in Urban Environments.,” in Robotics: Science

and Systems, 2007, vol. 4, p. 1.
[2] R. Yozevitch, B. Ben-Moshe, and A. Dvir, “GNSS accuracy

improvement using rapid shadow transitions,” IEEE Trans. Intell.

Transp. Syst., vol. 15, no. 3, pp. 1113–1122, 2014.

Figure 6: Comparison between the proposed multiclass based association

alignment and non-class association alignment. The green, red and blue
ellipses are the feature likelihood fields for curb, planar and pole features

respectively. The pink points are the wrong alignment result using the

non-class association method. The yellow points are the alignment result
using the proposed method. The pink star, yellow star and green triangle

are the position estimation based on non-class based alignment, the

proposed method and near-ground truth position respectively.

TABLE Ⅱ. COMPARISON OF THE SIZE BETWEEN PROPOSED

FLAME MAP AND 3D POINT CLOUD MAP

Test Site

Map Type

Test Site #1

(62000 𝑚2)

Test Site #2

(181000 𝑚2)

FLAME Map 210.1 kB 730 kB

3D

Point

Cloud

Map

36 points/𝑚2 35.4 MB 87.6 MB

121 points/𝑚2 152.3 MB 230.2 MB

400 points/𝑚2 403.3 MB 580.0MB

Figure 7: Localization result when there are dynamic and static objects that

are not included in the map. The pink points are the detected feature points.

The green, red and blue ellipses are the feature likelihood fields for curb,
planar and pole features respectively. The orange rectangle is a large bus

passing by. The yellow rectangles are parked cars by the road. The pink star

and green triangle are the estimated position and ground truth respectively.

TABLE I. COMPARISON OF POSITION ESTIMATION (POS) MAE ERROR AND ORIENTATION (YAW) MAE ERROR BETWEEN PROPOSED METHOD AND

OTHER METHODS.

Experiment

Type
Map type

LiDAR

data

Exp #1 (5~10mph) Exp #2 (15~20mph) Exp #3 (25~30mph)

Test Site#1 Test Site#2 Test Site#1 Test Site#2 Test Site#1 Test Site#2

Pos Yaw Pos Yaw Pos Yaw Pos Yaw Pos Yaw Pos Yaw

3D point

cloud

LiDAR

scans
4.05 0.29 7.13 0.35 5.10 0.42 7.58 0.38 5.02 0.41 6.31 0.45

Non-class

FLM

2D LiDAR

scans
17.83 1.58 22.83 2.04 19.47 1.75 21.39 1.99 20.17 1.69 20.83 2.16

Single-step

Alignment

Non-class

FLM

Non-class

feature

points

12.54 0.92 10.37 0.88 14.52 1.36 11.35 0.95 14.10 1.13 12.94 1.03

FLAME

map

Multiclass

feature

points

8.23 0.577 7.45 0.46 8.10 0.62 7.93 0.59 8.31 0.49 7.96 0.61

Overall

3D point

cloud

LiDAR

scans
4.06 0.34 7.42 0.40 5.42 0.46 7.61 0.40 5.14 0.46 6.83 0.48

Localization
FLAME

map

Multiclass

feature
points

8.76 0.92 8.15 0.46 8.31 0.86 9.47 0.61 9.13 0.79 8.75 0.64

Different type of LiDAR data has been tested to align with different type of maps. FLM in this table stands for Feature Likelihood Map. Non-class FLM and non-class feature points are the feature data

without class semantic information, such as planar, pole or curb. The unit for position estimation and yaw angle are centimeter and degree respectively. The method framed by bold lines is the proposed

method. For single-step alignment experiment, the current state 𝑿𝑡 is updated from the previous near-ground truth state.

[Type here]

[3] Y. Gu, L.-T. Hsu, and S. Kamijo, “GNSS/onboard inertial sensor
integration with the aid of 3-D building map for lane-level vehicle self-

localization in urban canyon,” IEEE Trans. Veh. Technol., vol. 65, no.

6, pp. 4274–4287, 2016.
[4] R. W. Wolcott and R. M. Eustice, “Robust LIDAR localization using

multiresolution Gaussian mixture maps for autonomous driving,” Int. J.

Robot. Res., vol. 36, no. 3, pp. 292–319, 2017.
[5] J. Levinson and S. Thrun, “Robust vehicle localization in urban

environments using probabilistic maps,” in Robotics and Automation

(ICRA), 2010 IEEE International Conference on, 2010, pp. 4372–4378.
[6] C. Cadena et al., “Past, present, and future of simultaneous localization

and mapping: Toward the robust-perception age,” IEEE Trans. Robot.,

vol. 32, no. 6, pp. 1309–1332, 2016.
[7] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and A.

Mouzakitis, “A survey of the state-of-the-art localization techniques

and their potentials for autonomous vehicle applications,” IEEE
Internet Things J., vol. 5, no. 2, pp. 829–846, 2018.

[8] M. Montemerlo et al., “Junior: The stanford entry in the urban

challenge,” J. Field Robot., vol. 25, no. 9, pp. 569–597, 2008.
[9] C. Urmson et al., “Autonomous driving in urban environments: Boss

and the urban challenge,” in The DARPA Urban Challenge, Springer,

2009, pp. 1–59.
[10] J. Leonard et al., “A perception‐driven autonomous urban vehicle,” J.

Field Robot., vol. 25, no. 10, pp. 727–774, 2008.

[11] S. Kammel et al., “Team AnnieWAY’s autonomous system for the
2007 DARPA Urban Challenge,” J. Field Robot., vol. 25, no. 9, pp.

615–639, 2008.
[12] P. Ruchti, B. Steder, M. Ruhnke, and W. Burgard, “Localization on

openstreetmap data using a 3d laser scanner,” in Robotics and

Automation (ICRA), 2015 IEEE International Conference on, 2015, pp.
5260–5265.

[13] “https://www.openstreetmap.org.” .

[14] D. Gruyer, R. Belaroussi, and M. Revilloud, “Map-aided localization
with lateral perception,” in Intelligent Vehicles Symposium

Proceedings, 2014 IEEE, 2014, pp. 674–680.

[15] R. Spangenberg, D. Goehring, and R. Rojas, “Pole-based localization
for autonomous vehicles in urban scenarios,” in Intelligent Robots and

Systems (IROS), 2016 IEEE/RSJ International Conference on, 2016,

pp. 2161–2166.

[16] E. Javanmardi, M. Javanmardi, Y. Gu, and S. Kamijo, “Autonomous

vehicle self-localization based on multilayer 2D vector map and multi-

channel LiDAR,” in 2017 IEEE Intelligent Vehicles Symposium (IV),
2017, pp. 437–442.

[17] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena,

“Segmatch: Segment based place recognition in 3d point clouds,” in
2017 IEEE International Conference on Robotics and Automation

(ICRA), 2017, pp. 5266–5272.

[18] R. Dubé, A. Cramariuc, D. Dugas, J. Nieto, R. Siegwart, and C. Cadena,
“SegMap: 3D Segment Mapping using Data-Driven Descriptors,” in

Robotics: Science and Systems (RSS), 2018.

[19] A. Zaganidis, L. Sun, T. Duckett, and G. Cielniak, “Integrating deep
semantic segmentation into 3-D point cloud registration,” IEEE Robot.

Autom. Lett., vol. 3, no. 4, pp. 2942–2949, 2018.

[20] P. Wang, R. Yang, B. Cao, W. Xu, and Y. Lin, “Dels-3d: Deep
localization and segmentation with a 3d semantic map,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,

2018, pp. 5860–5869.

[21] S. Thrun and M. Montemerlo, “The graph SLAM algorithm with

applications to large-scale mapping of urban structures,” Int. J. Robot.

Res., vol. 25, no. 5–6, pp. 403–429, 2006.
[22] W. Zhang et al., “An easy-to-use airborne LiDAR data filtering method

based on cloth simulation,” Remote Sens., vol. 8, no. 6, p. 501, 2016.

[23] D. D. Morris, “Obstacles and foliage discrimination using lidar,” in
Unmanned Systems Technology XVIII, 2016, vol. 9837, p. 98370E.

[24] M. Himmelsbach, F. V. Hundelshausen, and H.-J. Wuensche, “Fast

segmentation of 3d point clouds for ground vehicles,” in Intelligent
Vehicles Symposium (IV), 2010 IEEE, 2010, pp. 560–565.

[25] B. Douillard et al., “On the segmentation of 3D LIDAR point clouds,”

in Robotics and Automation (ICRA), 2011 IEEE International
Conference on, 2011, pp. 2798–2805.

[26] T. Chen, B. Dai, R. Wang, and D. Liu, “Gaussian-process-based real-

time ground segmentation for autonomous land vehicles,” J. Intell.
Robot. Syst., vol. 76, no. 3–4, pp. 563–582, 2014.

[27] M. Zhang, D. D. Morris, and R. Fu, “Ground segmentation based on
loopy belief propagation for sparse 3d point clouds,” in 2015

International Conference on 3D Vision (3DV), 2015, pp. 615–622.

[28] R. S. Stephens, “Probabilistic approach to the Hough transform,” Image
Vis. Comput., vol. 9, no. 1, pp. 66–71, 1991.

[29] T. Chen, B. Dai, D. Liu, J. Song, and Z. Liu, “Velodyne-based curb

detection up to 50 meters away,” in Intelligent Vehicles Symposium
(IV), 2015 IEEE, 2015, pp. 241–248.

[30] C. Fernández, D. F. Llorca, C. Stiller, and M. A. Sotelo, “Curvature-

based curb detection method in urban environments using stereo and
laser,” in 2015 IEEE Intelligent Vehicles Symposium (IV), 2015, pp.

579–584.

[31] W. Zhang, “LIDAR-based road and road-edge detection,” in Intelligent
Vehicles Symposium (IV), 2010 IEEE, 2010, pp. 845–848.

[32] P. Biber and W. Strasser, “The normal distributions transform: a new

approach to laser scan matching,” in Proceedings 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS

2003) (Cat. No.03CH37453), 2003, vol. 3, pp. 2743–2748 vol.3.

[33] P. Su, K. Daniel, C. Xi, A.-Q. Hothaifa, M. Daniel, and R. Hayder, “3D
Scan Registration Based Localization for Autonomous Vehicles – A

Comparison of NDT and ICP under Realistic Conditions,” presented at

the IEEE Connected and Automated Vehicles Symposium 2018,
Chicago, 2018.

[34] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous

driving? the kitti vision benchmark suite,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition, 2012, pp. 3354–3361.

[35] H. Caesar et al., “nuScenes: A multimodal dataset for autonomous
driving,” ArXiv Prepr. ArXiv190311027, 2019.

