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Abstract— Accurate vehicle localization is arguably the most 

critical and fundamental task for autonomous vehicle 

navigation. While dense 3D point-cloud-based maps enable 

precise localization, they impose significant storage and 

transmission burdens when used in city-scale environments. In 

this paper, we propose a highly compressed representation for 

LiDAR maps, along with an efficient and robust real-time 

alignment algorithm for on-vehicle LiDAR scans.  The proposed 

mapping framework, which we refer to as Feature Likelihood 

Acquisition Map Emulation (FLAME), requires less than 0.1% 

of the storage space of the original 3D point cloud map. In 

essence, FLAME emulates an original map through feature 

likelihood functions. In particular, FLAME models planar, pole 

and curb features. These three feature classes are long-term 

stable, distinct and common among vehicular roadways. 

Multiclass feature points are extracted from LiDAR scans 

through feature detection. A new multiclass-based point-to-

distribution alignment method is proposed to find the 

association and alignment between the multiclass feature points 

and the FLAME map. The experimental results show that the 

proposed framework can achieve the same level of accuracy (less 

than 10cm) as the 3D point cloud based localization. 

I. INTRODUCTION 

A fundamental task for autonomous vehicles is to 

accurately determine its position at all times.  Multiple key 

sub-systems rely either fully or partially on the performance 

of the localization algorithm.  It has been estimated that 

decimeter level localization accuracy is required for 

autonomous vehicles to drive safely and smoothly [1].  

GNSS-based (Global Navigation Satellite System) techniques 

struggle to achieve this level of accuracy except for open sky 

areas [2], [3]. Map-based localization frameworks, especially 

those that utilize Light Detection and Ranging (LiDAR) based 

localization methods [4], [5], are popular because they can 

achieve centimeter level accuracy regardless of light 

conditions. However, a key drawback of any localization 

method that relies on 3D point cloud maps is the enormous 

size of the map itself. Consequently, there is a need for 

efficient representations of such maps while maintaining 

high-accuracy localization capabilities. The representation 

format should contain sufficient information for vehicles to 

localize and be lightweight enough to be stored and 

downloaded into vehicles in real-time when needed. 

Furthermore, it is important to note that environments do 

change rather frequently, and it is therefore important to have 

the ability to update the map to reflect these changes.  

In this paper, we propose a lightweight, map-based 

localization framework, Feature Likelihood Acquisition Map 

Emulation (FLAME). Fig. 1 shows an overview of our system 

architecture. From the map point of view, instead of the point 

cloud, compressed and lightweight features are used to 

represent the environment. As made clear later, FLAME 

emulates an original map through feature likelihood 

functions. The size of the final FLAME map is under 0.1% of 

the original point cloud. To align the real-time LiDAR scan 

to the feature map for localization, corresponding features are 

extracted in real-time from the scan through feature detection. 

Experimental results show that our proposed method can 

achieve comparable centimeter level localization accuracy to 

the traditional dense 3D point cloud based methods. The main 

contributions are: 

⚫ A novel FLAME map representing a 3D urban point 

cloud in a highly compressed form.  

⚫ A real-time, feature-detection method for on-vehicle 
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Figure 1: Overview of our proposed FLAME map-based localization 

architecture. 
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LiDAR scans. 

⚫ A multiclass feature association and alignment 

algorithm that achieves accurate alignment (error less 

than 10cm) between the detected LiDAR scan 

features and the FLAME map. 
The paper is organized as follows: Section Ⅱ introduces 

related works. Section Ⅲ illustrates the FLAME system 
architecture. Section Ⅳ and section Ⅴ explain the processing 
of map and feature detection respectively. Section Ⅵ 
describes the alignment between detected features and feature 
map. Section Ⅶ shows the experimental results and finally in 
section Ⅷ, we conclude the paper. 

II. RELATED WORK 

 An overview of the related work on localization in 3D point 

clouds was discussed in [6] and [7]. In this section, we only 

review feature map-based methods. 

 Many efforts have explored different methods to compress 

city-scale maps while ensuring accurate localization. During 

the DARPA urban challenge, all teams were provided with a 

digital street map of the environment in the form of a Road 

Network Definition File (RNDF) and a high-resolution aerial 

image of the test site which can be used to enhance the RNDF 

for localization and planning [8]–[11]. The RNDF file is the 

prototype of the HD vector map that professional mapping 

companies offer for autonomous driving nowadays. Most of 

the teams used a fused localization system based on GPS, 

odometry, inertial measurement unit (IMU) and LiDARs [8]–

[11]. These methods can determine the global pose in lane 

level accuracy. Philipp Ruchti et al.[12] proposed a method 

to localize a mobile robot based on OpenStreetMap [13] and 

3D LiDAR. They developed a road classification scheme for 

3D LiDAR data and a novel sensor model, which relates the 

classification results to a road network. However, their 

localization accuracy is only meter-level. Domonique Gruyer 

et al.[14] provide an ego-lane level of accuracy localization 

system using an accurate digital lane marking map and 

cameras. Using only the lane markings in the digital map 

limits the application scenarios for the system since lanes can 

be blocked by other vehicles and not well painted in some 

roadways. Pole features are long-term stable and very 

common in the environment. A decimeter-level accuracy 

pole-based localization for autonomous vehicles using stereo 

camera system is proposed in [15]. E. Javanmardi et al.[16] 

proposed a multilayer 2D vector map based localization 

framework using 3D LiDAR. The only class of features 

contained in their 2D vector map is building footprints; and 

hence, alignment would fail for urban regions where mapped 

building facades are not within range of the scanning LiDAR. 

 Recently, neural networks have been leveraged to enable 

learning-based localization and mapping [17]–[20].  These 

include a learnable data-driven 3D segment descriptor to 

encode the point cloud, [17] and [18], which localize using 

segment feature matching and geometric verification, and the 

extracted features reconstruct the environment. A. Zaganidis 

et al. [19] used PointNet, a deep neural network for extracting 

semantic information from point cloud and incorporate it in 

point cloud registration. These methods learn features from 

the training data instead of handcrafting them; they have 

future potential but suffer from computation, robustness and 

accuracy issues. 

III. SYSTEM ARCHITECTURE 

Fig. 1 shows the overview of the system architecture and 
dataflows. The green arrows in Fig. 1 describe the proposed 
pipeline. From the map end, three classes of features, planar, 
pole and curb, are extracted from the original point cloud map 
and make up the feature vector map. Then the proposed 
FLAME map is generated based on the uncertainty of the 
feature vector map. From the LiDAR sensor end, 
corresponding classes of features are extracted from the real-
time LiDAR scan through the feature detection algorithm. 
Then the proposed multiclass based association alignment 
algorithm is used to align the multiclass feature points and the 
FLAME map for localization. 

IV. FLAME MAP 

A. Classes of Features 

We propose a three-class feature set to represent 
environments around vehicular roadways.  The feature set is 
chosen so that features are common and broadly representative, 
as well as being discriminative and readily localized.  As 
mentioned before, we consider three feature classes: Planar 
features, which include walls, building facades, fences, signs 
with large boards, and other planar surfaces. Pole features that 
include the pole part of streetlights, traffic signs, tree trunks 
and similar vertical shapes. Finally, curb features discretely 
sample curbs.  Each of these feature types is easily detected by 
LiDAR, even for low resolution LiDAR, and can be modeled 
by simple geometric entities, as described in the next 
subsection. 

B. Generating 2D Feature Vector Map 

Our feature map is automatically created from an HD 3D 

point cloud map.  The 3D point cloud map data used in this 

study was collected by a mobile mapping system from a third 

party equipped with a 32 lines LiDAR, a precise GNSS, IMU 

and several cameras with an algorithm similar to 

GraphSLAM [21]. The resolution of the raw point cloud map 

data is usually more than 400 points/𝑚2.  

The first step is to remove ground pixels and organize 

above-ground pixels into cells.  The points above the ground 

plane are extracted from the point cloud using Cloth 

Simulation Filter [22]. This is followed by rasterizing the off-

ground points into small cells on the X-Y plane with 

resolution of r by r. The cell 𝑐𝑖  can be represented using a 

vector: 𝑐𝑖 = {𝑷𝑐𝑖
, 𝑁𝑐𝑖

} , where 𝑷𝑐𝑖
 represents the point set 

located within this cell, and 𝑁𝑐𝑖
 is the number of points in 𝑷𝑐𝑖

. 

From our experience, a resolution should be at most 0.2m by 

0.2m to obtain centimeter level accuracy in localization. 

Next, our three feature classes are extracted from the 

rasterized point cloud. All the landmark features are tall 

vertical features above the ground plane, which leads to the 

fact that the cells containing landmark features would 

comprise more points when compared to other cells. Hence, 

we filter out the cells 𝑐𝑖  such that 𝑁𝑐𝑖
< 𝑁𝑡 , where 𝑁𝑡  is a 

threshold that is a function the original point cloud density 

and the resolution of rasterizations. A 2D feature point map 
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can be formed using the x and y coordinates of the remaining 

cells’ center point. Planar features and curb features can be 

described as a set of connected line segments in 2D. From this 

feature point map, connected line segments representing 

planar features can be extracted using Random Sample 

Consensus (RANSAC) or Hough transform. Using the same 

method for the segmented ground points, one can extract the 

curb features. As for pole features, since the radius of most 

pole features in the urban and suburban environments are less 

than 20cm, which can be approximately modeled as a point in 

2D. Applying 2D point clustering and calculating the center 

of the cluster could extract the point-based pole features from 

the point feature map.  

 The extracted three feature classes constitute the 2D feature 

vector map. 

C. Generating FLAME Map 

For traditional point-cloud registration-based localization, 

the real-time LiDAR scan is matched to a point cloud map 

through a point-to-point matching process. However, to 

perform feature matching effectively, the feature vector map 

built in the previous section needs to be converted into feature 

likelihood map (FLAME map) represented with normal 

distributions as described in this section. Compared to a 

feature vector map, a FLAME map can better emulate the 

original point cloud map. Under FLAME, normal distribution 

likelihood field functions can be treated as the generative 

process for the actual points from the landmark features in the 

original point cloud map.  

The parameters for each normal distribution likelihood 

field are calculated as follows. For planar features modeled as 

connected line segments in the feature vector map, we divide 

the connected line segments into smaller line segments of 

length d. A normal distribution is used to model each line 

segment 𝑙𝑖 as a likelihood field with a mean value 𝝁𝑖 and a 

covariance matrix 𝑐𝑜𝑣𝑖 . The mean value 𝝁𝑖 is the center point 

of this line segment. The calculation of 𝑐𝑜𝑣𝑖  is as follows. 

First, as shown in Fig. 2, assuming there is a 99% confidence 

ellipse for 𝑁(𝝁𝑖 , 𝑐𝑜𝑣𝑖) along this line segment, i.e. 𝝁𝑖 is the 

center of the confidence ellipse, the line segment direction is 

the major axis direction. The underlying meaning of this 

confidence ellipse is that 99% of the points generated by the 

normal distribution 𝑁(𝝁𝑖 , 𝑐𝑜𝑣𝑖)  would locate within this 

ellipse. The length of the major axis 𝑙𝑎𝑖  and minor axis 𝑙𝑏𝑖 of 

the confidence ellipse would be as follows: 

 
𝑙𝑎𝑖 = 2√𝑠 ∙ 𝜆1 = 2 (

𝑑

2
+ 𝜀𝑙𝑖𝑛𝑒) (1) 

 

𝑙𝑏𝑖 = 2√𝑠 ∙ 𝜆2 = 2 (

𝑑
2

+ 𝜀𝑙𝑖𝑛𝑒

10
) (2) 

where 𝑠 is the 99% Chi-Square likelihood with 2 degrees of 

freedom, 𝜆1 and 𝜆2 are the larger and smaller eigen value of 

the covariance matrix 𝑐𝑜𝑣𝑖  respectively. 𝜀𝑙𝑖𝑛𝑒  is the 

uncertainty factor. Therefore, 𝜆1  and 𝜆2  can be calculated 

from equations (1) and (2). The positive direction of the major 

and minor axis of the confidence ellipse would be the same as 

the direction of the eigenvector corresponding to 𝜆1 and 𝜆2 

respectively. Therefore, we can build the unit eigenvectors 𝒗1 

and 𝒗2 according to the line segment direction. As shown in 

Fig. 2, 𝒗1  would point to the same direction as this line 

segment, 𝒗2 would be vertical to 𝒗1. So, for a line segment 𝑙𝑖, 

the corresponding likelihood filed modeled by normal 

distribution 𝑁(𝝁𝑖 , 𝑐𝑜𝑣𝑖) can be calculated as follows: 

 
𝝁𝑖 =

(𝒑𝑙𝑖1 + 𝒑𝑙𝑖2)

2
 (3) 

 𝑐𝑜𝑣𝑙𝑖
= 𝑽 ∙ 𝑫 ∙ 𝑽−1 (4) 

 
𝑽 = [𝒗1 𝒗2], 𝑫 = [

𝜆1 0
0 𝜆2

] (5) 

where 𝑝𝑙𝑖1 and 𝑝𝑙𝑖2 are the end points of line segment 𝑙𝑖. 𝑽 is 

the orthonormal eigenvector matrix. 

For curb features, we use the same processing method 

because curb features are also represented as connected line 

segments in the feature vector map. The only difference is that 

we use a larger uncertainty factor 𝜀𝑐𝑢𝑟𝑏. This is the case since 

when compared to walls, fences and building facades, curbs 

are much lower to the ground and usually not strictly vertical 

to the ground, and this would result in a larger uncertainty.  

Poles are represented as points in the feature vector map, 

and their feature likelihoods are modeled by normal 

distribution 𝑁(𝝁𝑝𝑜𝑙𝑒𝑗
, 𝑐𝑜𝑣𝑝𝑜𝑙𝑒𝑗

), 𝝁𝑝𝑜𝑙𝑒𝑗
 is the coordinate of 

𝑝𝑜𝑙𝑒𝑗, 𝑐𝑜𝑣𝑝𝑜𝑙𝑒𝑗
 can be calculated as follows: 

 
𝑐𝑜𝑣𝑝𝑜𝑙𝑒𝑗

=
𝑟2

𝑠
∙ 𝑰 (6) 

where r represents the radius of the confidence circle, 𝑠 is the 

99% Chi-Square likelihood with 2 degrees of freedom, I is 

2x2 identity matrix. If the radius of the pole is provided, r in 

this equation can be changed into 𝑟𝑝𝑜𝑙𝑒𝑗
+ 𝜀𝑝𝑜𝑙𝑒, where 𝑟𝑝𝑜𝑙𝑒𝑗

 

is the radius of the pole and 𝜀𝑝𝑜𝑙𝑒 is the uncertainty factor. 

 

Figure 2: The calculation of mean value 𝜇𝑖  and covariance 𝑐𝑜𝑣𝑖  for the 

likelihood field of line segment 𝑙𝑖. The green line represents line segment 𝑙𝑖, 

the blue line and yellow line stand for the line segment 𝑙𝑖−1 and line segment 

𝑙𝑖+1  respectively. The red ellipse is the 99% confidence ellipse generated 

from 𝑁(𝝁𝑖, 𝑐𝑜𝑣𝑖). 
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V. FEATURE DETECTION 

 Up to this point, a dense 3D point cloud of the environment 

has been transformed into a FLAME map.  Our goal is ego 

localization using real-time LiDAR scans.  However, rather 

than directly matching 3D LiDAR points to the feature map, 

we propose first transforming these scans into feature maps 

themselves and then aligning them for ego localization.  As 

we describe in this section, this has the advantages of 

improved association with fewer ambiguities as well as 

reduced computation, while simultaneously maintaining high 

accuracy.   

 Finding features in a LiDAR scan differs from feature 

detection in a dense, pre-scanned point cloud due primarily to 

the decrease in resolution with range from sensor.  We select 

feature detectors that can operate at a broad range of 

resolutions, including low sampling resolution, and describe 

them in this section.  The pole and planar features detectors 

are taken from [23] and summarized below, while we develop 

our own curb feature detector. 

A. Scan Preprocessing 

 LiDAR points are initially filtered to obtain surface 

normals and are categorized as ground, steep and other. 

Surface normals are estimated from neighboring pixels in a 

depth image as described in [23].  These normals provide a 

steepness measure for pixels; those close to vertical (within 

12.5 degrees) are labeled steep pixels, and are used to gather 

evidence for our pole and planar features.  Any appropriate 

ground detection method could be used [24]–[27] to label 

ground pixels. 

B. Pole Feature Detection 

We search for pole features by first dividing the LiDAR 

scan into a regular array of cells of size 1m.  Within each cell 

we gather evidence for a pole and its location. Poles are 

modeled as vertical cylinders with LiDAR pixels distributed 

on the surface of the pole and with normal vectors that point 

away from the pole center and within 90 degrees of the sensor.  

Pole parameters, 𝜃𝑝𝑜𝑙𝑒 = (𝑥𝑗 , 𝑦𝑗 , 𝑟𝑗) , are its center location 

and radius.  Assuming a cell contains a pole, a LiDAR pixel 

with location 𝒙𝑖  in a cell and normal 𝒏𝑖  can predict a pole 

center as illustrated in Fig 3.  This prediction, 

𝑃(𝒙𝑖 , 𝒏𝑖|𝑇𝑝𝑜𝑙𝑒 , 𝜃𝑝𝑜𝑙𝑒),  can be modeled as Gaussian centered 

at the pole center, and sampled over grid centers.   

If the cell is not a pole cell, then model  𝑃(𝒙𝑖 , 𝒏𝑖|𝑇𝑛𝑜𝑛𝑝𝑜𝑙𝑒) 

as a uniform density over grid centers equal to 
1

𝑛𝑔
, where 𝑛𝑔 

is the number of grid elements in each cell.   

Assuming independent pixel samples, we can solve for the 

maximum likelihood ratio of pole to non-pole, 

𝑀𝐿𝑅𝑝𝑜𝑙𝑒(𝜃𝑝𝑜𝑙𝑒), using a probabilistic Hough transform [28]. 

This maximizes the following expression over pole locations 

and radii: 
 

𝑀𝐿𝑅𝑝𝑜𝑙𝑒(𝜃𝑝𝑜𝑙𝑒) = argmax
𝜃𝑝𝑜𝑙𝑒

𝑛𝑔
𝑁 ∏ 𝑃(𝑥𝑖 , 𝑛𝑖|𝑇𝑝𝑜𝑙𝑒 , 𝜃𝑝𝑜𝑙𝑒)

𝑁𝑠
𝑖=1     (7) 

Here 𝑁𝑠 is the number of steep pixels, and 𝑁 the number of 

non-ground pixels. The result is a pole estimate for each cell 

along with a likelihood ratio for a pole existing there.  A 

threshold on this likelihood ratio is determined 

discriminatively.  Further details of the method are in [23]. 

C. Planar Feature Detection 

 Planar features, like pole features, are detected using an 

array of cells distributed over the LiDAR scan.  In each cell, 

a planar feature is modeled as a set of steep pixels with 

normals having the same orientation in the horizontal plane, 

𝜃𝑤𝑎𝑙𝑙 .  Non-planar features are modeled as having uniform 

normal orientation.  Once again a probabilistic Hough 

transform solves for the maximum likelihood ratio of wall to 

non-wall analogous to (7), along with a wall orientation 𝜃𝑤𝑎𝑙𝑙 , 

with further details in [23]. 

D. Curb Detection 

Curbs are another class of common and important features 

that are readily observable by moving vehicles. Based on the 

geometry and topology of the curb features around the vehicle, 

they can provide reliable constraints in the lateral direction. 

There are many curb detection algorithms available[29]–[31], 

but these methods are computationally expensive, and work 

best with a combination of high resolution 3D LiDAR and 

other sensors. This paper proposes a lightweight curb 

detection method, which can be used for any resolution 

LiDAR.  

We have experimented the proposed method with a low-

resolution LiDAR that returns a point cloud formed by 16 

concentric measurements, which we refer to as rings. Further, 

the LiDAR is mounted on the top of the vehicle and parallel 

to the ground. If the height is fixed, for empty flat ground, the 

distance between each consecutive ring can be determined. 

Points where consecutive rings are closer than this are 

candidates for being curbs. 

We compute the distance between rings for flat ground as 

illustrated in Fig. 4. The 𝑖𝑡ℎring radius is:  

 
𝑟𝑖

𝑟𝑒𝑔𝑢𝑙𝑎𝑟
=

ℎ

tan𝜃𝑖

 
 

(8) 

where h is the LiDAR height relative to the flat ground and 𝜃𝑖 

is the laser beam angle. The distance between ring i and i+1 

is: 

 

Figure 3: An illustration of evidence gathering for pole detection, in this 

case radius 𝑟𝑗.  A cell is divided into a uniform grid at 10cm spacing.  Each 

steep LiDAR point (black dot) predicts a pole center offset 𝑟𝑗 along its 

normal.  Predictions are interpolated into the grid, and a Hough Transform 

finds the maximum likelihood pole center, with a search over multiple 
radii. 
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 ∆𝑟𝑖,𝑖+1
𝑟𝑒𝑔𝑢𝑙𝑎𝑟

= 𝑟𝑖+1 − 𝑟𝑖  , 0 < 𝑖 < n − 1 (9) 

Additional factors influence the distance between consecutive 

rings including non-flat ground and the LiDAR is not being 

mounted exactly parallel to the ground.  To accommodate 

these we define an interval: 

 𝑑𝑖,𝑖+1 = [𝑎∆𝑟𝑖,𝑖+1
𝑟𝑒𝑔𝑢𝑙𝑎𝑟

, 𝑏∆𝑟𝑖,𝑖+1
𝑟𝑒𝑔𝑢𝑙𝑎𝑟

], 

0.5 < 𝑎 < 𝑏 < 1 
(10) 

where a and b are parameters that adjust the range bounds. 

Points with ∆𝑟𝑖,𝑖+1  falling within 𝑑𝑖,𝑖+1  are categorized as 

curb candidates.  

To avoid misclassifying sloped regions as curbs we 

develop the following strategy.  We observe that gradients 

provide useful cue: curbs typically have a large height 

variance in lateral direction (y direction) and low height 

variance in longitudinal direction (x direction).  To quantify 

this, the LiDAR scan is placed in an n by m cell grid, where n 

is the number of rings and each row i stores a ring. Each cell 

grid 𝑐𝑖,𝑗 stores the mean value (𝑥𝑖,𝑗, 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗) of the position of 

points that fall in 𝑐𝑖,𝑗. Therefore, the gradient is calculated as 

follows: 

 𝑔𝑖,𝑗 =
𝑧𝑖,𝑗+1 − 𝑧𝑖,𝑗−1

dist𝑥𝑦(𝑐𝑖,𝑗+1, 𝑐𝑖,𝑗−1)
 (11) 

where 𝑧𝑖,𝑗  is the z value of the element in 𝑖𝑡ℎ  row and 𝑗𝑡ℎ 

column in the cell grid. dist𝑥𝑦(𝑎, 𝑏) represents the Euclidean 

distance between a and b in x-y plane. For each grid 𝑐𝑖,𝑗, we 

compute 𝑔𝑖,𝑗 and compare it with a threshold 𝑡𝑔 to classify it 

as a curb candidate or not. Finally, based on the ground 

segmentation depicted in the previous subsection, only points 

classified both as ground and curb are classified as curb points. 

VI. ASSOCIATION AND ALIGNMENT 

The two key components of ego localization are feature 

association and feature alignment.  This section proposes a 

localization method that leverages the three separate feature 

types: pole, planar and curb. Similar to NDT, which optimizes 

a score function related to the position density for each feature 

rather than requiring explicit association [32], we build the 

score for each detected feature of the current scan by summing 

densities from nearby map features of the same class and 

optimize this. Our full method is summarized in Algorithm 1.  

The state of the system is defined as 𝑿𝑡 = (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡)𝑇 , a 

three-parameter pose in 2D. 𝒛𝑡
𝑝𝑜𝑙𝑒

, 𝒛𝑡
𝑝𝑙𝑎𝑛𝑎𝑟

 and 𝒛𝑡
𝑐𝑢𝑟𝑏  stand 

for the detected pole, planar and curb points from the LiDAR 

scan at time t. 𝐹𝐿𝐴𝑀𝐸_map contains N4 likelihood fields, 𝒎𝑖, 

which each encompassing the class name, mean value 𝝁𝑖 and 

the covariance matrix 𝑐𝑜𝑣𝑖 . 𝑣𝑡
𝑚  and 𝜃𝑡

𝑚 are the measured 

vehicle linear speed and heading angle at time stamp t from 

odometry and IMU used for motion prediction.  

Line 2 shows the motion prediction using the previous state, 

linear vehicle speed 𝑣𝑡
𝑚  and heading angle 𝜃𝑡

𝑚 . T is the 

sampling period. The motion model is only used for providing 

the initial guess to initialize the iterative alignment. The 

whole iterative alignment process is depicted in lines 3~22. 

 Taking pole class feature as example (c==’pole’ in 
Algorithm 1), in line 8, for a transformed pole feature point 

𝑇(𝑿̂𝑡 , 𝒑𝑖
𝑝𝑜𝑙𝑒

), the correspondence is determined by finding the 

top 3 closest pole feature likelihood fields in the map. 𝑇(𝑿, 𝒑) 

is defined as a function that transforms a point p by pose X. 

𝑿̂𝑡 contains motion prediction error, and hence, associating 

𝑇(𝑿̂𝑡 , 𝒑𝑖
𝑝𝑜𝑙𝑒

) to the closest map pole feature likelihood field 

may not be correct. However, among the top three closest map 

pole feature likelihood fields, the probability of containing the 

correct correspondence would be much higher. Therefore, the 

strategy is to find all the potential correspondences and 

Figure 4: Scenario that 3D LiDAR beams intercept a flat plane. 

 

 

Algorithm 1: Multiclass Based Association and Alignment 
1 Variables: 

𝒛𝑡
𝑝𝑜𝑙𝑒

= ൛𝒑1
𝑝𝑜𝑙𝑒

, 𝒑2
𝑝𝑜𝑙𝑒

, … , 𝒑N1
𝑝𝑜𝑙𝑒

ൟ,  

𝒛𝑡
𝑝𝑙𝑎𝑛𝑎𝑟

= ൛𝒑1
𝑝𝑙𝑎𝑛𝑎𝑟

, 𝒑2
𝑝𝑙𝑎𝑛𝑎𝑟

, … , 𝒑N2
𝑝𝑙𝑎𝑛𝑎𝑟

ൟ,  

𝒛𝑡
𝑐𝑢𝑟𝑏 = {𝒑1

𝑐𝑢𝑟𝑏 , 𝒑2
𝑐𝑢𝑟𝑏 , … , 𝒑N3

𝑐𝑢𝑟𝑏}, 

𝒑𝑖
𝑐𝑙𝑎𝑠𝑠 = (𝑥𝑖

𝑐𝑙𝑎𝑠𝑠, 𝑦𝑖
𝑐𝑙𝑎𝑠𝑠),  

𝑐𝑙𝑎𝑠𝑠 = {'pole', 'planar', 'curb'}, 
FLAME _map = {𝒎1, 𝒎2, 𝒎3,…, 𝒎N4}, 
𝒎𝑖 = {𝑐𝑙𝑎𝑠𝑠, 𝝁𝑖 , 𝑐𝑜𝑣𝑖}, 
𝑿𝑡−1 = (𝑥𝑡−1, 𝑦𝑡−1, 𝜃𝑡−1)𝑇 

2 

𝑿̂𝑡 = ቎

𝑥ො𝑡

𝑦ො𝑡

𝜃෠𝑡

቏ = ቎

𝑥𝑡−1 + 𝑣𝑡
𝑚 ∙ 𝑇 ∙ 𝑐𝑜𝑠𝜃𝑡

𝑚

𝑦𝑡−1 + 𝑣𝑡
𝑚 ∙ 𝑇 ∙ 𝑠𝑖𝑛𝜃𝑡

𝑚

𝜃𝑡
𝑚

቏     %Motion Prediction 

3 while not converged do 

4     for each c in class: 

5       𝒔𝒄𝒐𝒓𝒆𝑐 ← 𝟎 

6       𝒈𝒄 ← 𝟎 

7       𝑯𝒄 ← 𝟎 

8    for all transformed detected c feature points 𝑇(𝑿̂𝑡, 𝑝𝑖
𝑐)  

9 do kd search with radius ≤ r to find the top 3 closest 

features in 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑_map with 𝑐𝑙𝑎𝑠𝑠 == 𝑐 

10 Update the negative score s (see equation (12)) 

11     𝑠𝑐𝑜𝑟𝑒𝑐 ← 𝑠𝑐𝑜𝑟𝑒𝑐 + 𝑠𝑖
𝑐(𝑿̂𝑡) 

12     Update the gradient vector 𝒈𝒄 

13 Update the Hessian Matrix 𝑯𝒄 

14   end for 

15   end for 

16   𝑠𝑐𝑜𝑟𝑒𝑎𝑙𝑙 = 𝑠𝑐𝑜𝑟𝑒𝑝𝑜𝑙𝑒 + 𝑠𝑐𝑜𝑟𝑒𝑝𝑙𝑎𝑛𝑎𝑟 + 𝑠𝑐𝑜𝑟𝑒𝑐𝑢𝑟𝑏 

17   𝒈𝑎𝑙𝑙 = 𝒈𝑝𝑜𝑙𝑒 + 𝒈𝑝𝑙𝑎𝑛𝑎𝑟 + 𝒈𝑐𝑢𝑟𝑏 

18   𝑯𝑎𝑙𝑙 = 𝑯𝑝𝑜𝑙𝑒 + 𝑯𝑝𝑙𝑎𝑛𝑎𝑟 + 𝑯𝑐𝑢𝑟𝑏 

19   solve 𝑯𝑎𝑙𝑙 ∙ ∆𝑿̂𝑡 = −𝒈𝑎𝑙𝑙 

20   𝑿̂𝑡 ← 𝑿̂𝑡 + ∆𝑿̂𝑡 

21  end while 

22  return 𝑿𝑡 ← 𝑿̂𝑡 
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combine them into the score. If fewer than three pole feature 

likelihood fields are found, only those found are used. If there 

is no pole feature likelihood field found in the neighborhood, 

then the algorithm drops this detected pole point in this 

iteration as it may be a false positive. This strategy also makes 

the system robust to dynamic moving objects that are not 

modeled in the map. For example, passing vehicles that may 

be detected as planar features should not be associated to any 

feature likelihood field in the FLAME map.  

Then, the score for a feature of class c is calculated and 

updated in lines 10~11 by summing the scores of up to 3 

nearby map features of the same class: 

𝑠𝑖
𝑐(𝑿̂𝑡) = ∑ 𝑒𝑥𝑝 (−

1

2
(𝑇(𝑿̂𝑡, 𝒑𝑖

𝑐) − 𝝁𝑗)
𝑇

∙ 𝑐𝑜𝑣𝑗
−1 ∙3

𝑗=1

(𝑇(𝑿̂𝑡, 𝒑𝑖
𝑐) − 𝝁𝑗)).  

(12) 

The total score over all features is found as described in lines 

12~13, as well as the gradient vector and Hessian Matrix of 

the pose vector 𝑿̂𝑡.  

In the proposed framework, the search for correspondence 

is constrained to the same class of features; for example, the 

detected curb feature points can only be associated with the 

curb feature likelihood fields in the map. This multiclass-

based association significantly reduces false alignments. The 

negative score, gradient vector and Hessian matrix are 

calculated based on their classes separately, but are all 

parameterized with the vehicle pose 𝑿̂𝑡. Newton’s method is 

used to maximize the total score function (lines 17~20). 

 To reduce the complexity of the system, the proposed 

architecture only focuses on three-parameter pose estimation 

in two dimensions. This is sufficient for most driving 

environments where the vehicle remains on the ground 

surface. 

VII. EXPERIMENTS AND ANALYSIS 

A. Experimental Platform and Test Sites 

The experimental platform used in this study is a modified, 

drive-by-wire Lincoln MKZ. The vehicle is equipped with a 

16 lines LiDAR (VLP-16), and a NovAtel PwrPak7 GNSS 

Inertial Navigation System to collect the near-ground truth 

data with an error of 2~3cm for analysis. A Core i7 CPU runs 

Ubuntu and Robot Operating System (ROS).  

 Two test sites in typical suburban environment included in 

this study. Test site #1 is a 62000 𝑚2 purpose-built proving 

ground, University of Michigan’s MCity Test Facility. Test 

site #2, as shown in Fig. 5, is West Circle Drive, a traffic hub 

in Michigan State University. Note that both the two test sites 

are roughly flat with no steep slopes.  

B. Evaluation and Comparison 

 To evaluate the performance of the proposed localization 

framework, we drove the vehicle for several loops with 

different speeds in the test sites and evaluated the position 

estimation by comparing the proposed method with 

traditional 3D point cloud registration based localization 

(NDT driven using the Point Cloud Library) and other related 

methods. Noted that the dynamic objects are not removed in 

the process of building 3D point cloud map and the real time 

LiDAR scans in our experiments. TABLE Ⅰ shows the 

comparison of position estimation mean absolute error (MAE) 

and orientation MAE error between the proposed method and 

other methods. We performed two types of experiments. One 

is an overall localization experiment; the second is a single-

step alignment experiment. For overall localization, as shown 

in Algorithm 1 in Section 6, it is a recursive algorithm, the 

current state 𝑿𝑡  is updated from the previous state 𝑿𝑡−1. In 

the single-step alignment experiment, the current state 𝑿𝑡 is 

updated from the previous ground truth state. For some of the 

methods we used for comparison, they have relatively large 

errors in each step of the alignment; and consequently, the 

accumulative error for each step would make the recursive 

algorithm fail and impossible to evaluate quantitatively. 

Using the previous ground truth to initialize the update would 

keep the algorithm running and make it feasible to evaluate 

and compare the error in each single step of the alignment for 

the whole route. The error for position estimation is defined 

as the Euclidean distance between the position estimation and 

the near-ground truth. The orientation error is defined as the 

absolute difference between the estimated yaw angle and the 

near-ground truth yaw angle. TABLE Ⅰ shows that the 

proposed method can achieve centimeter-level localization 

accuracy and same level of performance as the traditional 3D 

point cloud registration based method. Performance was good 

even for road segments when only two of the three feature 

classes were observed.  

 TABLE Ⅱ shows the comparison of the size for the two 

types of maps. The proposed FLAME map uses far less 

memory and computation than a traditional point cloud map. 

According to [33], 3D point cloud map with resolution of 121 

points/𝑚2  could achieve the best localization performance 

using VLP-16. This result illustrates that for localization 

applications, many of the rich details in 3D point cloud maps 

contribute little to improving localization accuracy, and can 

be efficiently encoded as class labels for feature likelihoods. 

 The use of multi-class features that are associated and 

aligned within class is advantageous when features are in 

close proximity.  This is particularly the case when maps are 

projected into a 2D plane.  Ignoring class can lead to incorrect 

associations. Fig. 6 compares the proposed multi-class based 

association alignment with non-class based alignment. This 

illustrates how non-class based alignment results in curb 

 
Figure 5: Test site #2, West Circle Drive at the campus of Michigan State 

University. The length of the route is about 1.45 km. The red line highlights 

the driven route. 
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features being miss-associated with planar-features on walls. 

On the other hand, multi-class features avoid this issue 

leading to improved alignment.  

 For map-based localization algorithms, environmental 

changes, which are not modeled in the prior map, can affect 

localization performance. Fig. 7 illustrates one scenario with 

some detected dynamic and static objects that are not included 

in the map. The measured LiDAR points from the side of the 

bus are detected as planar features. The huge bus also blocks 

the field of view behind it, so the features behind it cannot be 

detected. Despite this, the proposed multiclass based 

association alignment framework works well as no features 

are associated with the bus features.  

VIII. CONCLUSION 

 We introduced a new mapping and localization framework 

that is based on distinct feature classes and corresponding 

feature likelihood functions. The proposed FLAME map 

multiclass features enable robust localization, which could be 

achieved despite the fact that the required space needed for 

representing FLAME maps are orders of magnitude smaller 

than traditional 3D point cloud maps. Furthermore, a new 

feature-to-feature alignment algorithm is proposed to align 

the detected features from the LiDAR scans to the FLAME 

map. Using intra-class association improves alignment 

robustness when features are dense. Experimental results 

show that the proposed method can achieve centimeter level 

localization accuracy and is robust to static and dynamic 

changes in real environments that are not modeled in the map.  

 In future work, we plan to extend the FLAME approach to 

different sensor modalities and additional feature detection 

algorithms. Furthermore, we will evaluate our methods on 

some public available datasets collected with different sensors, 

such as KITTI [34] and nuScene [35] dataset. Moreover, it 

could of interest to incorporate graph-based optimization as 

the backend and build a complete online SLAM framework 

based on FLAME.  
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